1.Primary air is used for transportation of fine coal particle from coal mill to boiler floor at different elevations as per requirement.
2.Primary air is used for preheating of moisturised coal in to the coal mill so that minimum energy is required for combustion of the same.
3.As we all know that only 23% oxygen is available in the air by weight. For combustion of huge quantity of coal inside the boiler very high quantity of oxygen is required. This oxygen requirement will be completed by secondary air which is supplied by FORCED DRAFT fans through ducts.
This secondary air is coming via air preheater hence its outlet temperature increases this will help in combustion and low heat input is required for combustion of coal.
Few parameters critical to health of the Boiler are
(4)Heat rate of the Boiler. This is a composite index of many performance indicators. Most of them will appear below.
(5)Unburnt fuel in flue gas and at boiler bottom .
(6)Flue gas furnace exit temperature.
(7)Boiler tube metal temperatures.
(8)Oxygen in flue gas.
(9)Imbalances in flue gas temperature over a cross section.
(10)Spray water consumption in Super heater and Reheater.
(11)Heat radiation from insulation.
The above all affects the performance of the boiler.
Boiler efficiency is mainly depended on the amount of losses in the system. In high capacity pulverized coal fired boilers the total losses account to about 12 to 14%. Roughly 50% of the losses are governed by fuel properties like hydrogen in fuel, moisture in fuel and ambient air conditions. The other 50% losses are carbon loss and dry gas loss. The best efficiency in the boiler can be achieved if the losses are kept to the minimum. Since 50% of the losses are dependent on the fuel and ambient condition, the best efficiency can be achieved by properly tuning the other 50%, i.e. mainly carbon loss and dry gas loss.
The coal-fired steam boiler is a forced circulation high-pressure single-tube DC boiler. Its operation process includes three processes: the combustion process of the fuel, the heat transfer process of flue gas to water and the vaporization process after water absorbs heat. In order to better control these different processes, the control system should make
the heat of pulverized coal combustion adapt to the requirements of steam load changes and dryness.
In the work of transforming a coal-fired boiler into a gas-fired boiler, the principle of changing the original boiler should be reduced without changing the pressure component of the boiler body. The transformation process should focus on the choice of gas burners, the determination of the number of burners, the layout of the burners, the matching design of the furnace layout, and the selection of explosion-proof measures. Step by step, both economic benefits and practicality should be considered.
The coal-fired boiler refers to the boiler uses various types of coal as fuel and converts the heat of coal to steam or hot water.
There are generally two calculation methods of the circulating water volume of a coal-fired hot water boiler. One is to calculate the hourly water volume of one square meter and the other is to calculate the design parameter volume of every ton. As for the make-up water volume of this type of boiler, it is usually calculated as 1% to 3% of its total circulating water.
The proximate analysis of coal is to dry, heat and burn coal samples as required to get the percentage of moisture, volatiles, fixed carbon and ash in the coal and learn about the characteristics of coal combustion.
Coal-fired boilers refer to boilers that use various kinds of coals as fuel and convert the heat value of coals to steam or hot water.
Some specific parameters should be provided to calculate the theoretical coal consumption of a set of 20 tph coal-fired boiler. If the rated steam pressure is 1 MPa, the heat value of coal is 7000 kcal / kg, the boiler inlet water temperature is 20 ° C, and the boiler thermal efficiency is 80%, the daily coal consumption is 50-56 tons.