The number of passes that the flue gas travels before exiting the boiler has been a good criterion when comparing boilers. As the flue gas travels through the boiler it cools, and therefore changes volume. Multiple pass boilers increase efficiency because the passes are designed to maximize flue gas velocities as the flue gas cools. ZOZEN has developed new design technologies in our WNS series boilers allowing for comparable efficiencies in fewer passes, resulting in smaller boiler systems that will fit in tighter quarters.
The combustion air preheater is definitely one of heat exchanger applications. Based on Figure 1 below, flue gas simply leaves steam boiler and passes via air preheater. The combustion air is passed through this equipment too to increase its temperature before being combined with boiler fuel.
Because the temperature of combustion air is lower than the temperature of flue gas, combustion air receive heat transfer from flue gas through combustion air preheater in the process of convection heat transfer. The heat transfer make temperature of flue gas lower and consequently minimizes its heat loss and also decreases the air temperature to stack.
Economizer is one of steam boiler’s equipment which is used to heat feedwater before it is supplied into steam drum. Economizer is the heat exchanger equipment to increase boiler efficiency by absorbing heat recovery of flue gases. The lower temperature of flue gas out from stack, the heat loss will be less and the fuel which is needed to convert water into steam will be also less in certain circumstances. So it can be said that economizer can save the fuel efficiently. Economizer will make temperature of feedwater higher, so steam boiler can produce steam easily.
Evaporation phase occurs in water wall tubes. Evaporation is the process to convert water into steam. Therefore water wall tubes should be designed and constructed to provide high heat absorption, minimum excess air level and highest boiler efficiency. Construction of water wall tubes should be also constructed to prevent air leakage into steam boiler, eliminate amount of heat losses and permit high heat release and combustion rate in the furnace.
Construction of water wall tubes must provide high quality of the supporting component such as tubes, casing, refractory, lagging, tile, fin, and so on. Best construction will reduce heat loss and maintenance. Construction of water wall tubes can be classified into four types such as:
Boiler controls provide an extra level of safety and reassurance: they allow you to understand your boiler's daily operations better, as well as perform the crucial duty of ensuring that your boiler is operating safely and efficiently. Regardless of what kind of industrial or commercial operation you run, here are some must-have boiler controls to get the most out of your equipment.
Industrial boilers are welded from sturdy steel plates that are engineered to withstand intense heat and pressure - as a result of this thick steel, boilers can sometimes weigh as much as 165 tons! The construction of hot water boilers and steam boilers is very similar. They both feature a cylinder tube, otherwise known as the pressure vessel. The pressure vessel contains something called a flame tube, which is fired through a burner and a reversing chamber that feeds flue gases back through a second smoke tube. These flue gases are reversed again via an external reversing chamber. This reversing chamber sends the flue gases to the end of the boiler, in the third smoke tube pass. A major difference between hot water industrial boilers and the steam versions? Hot water boilers, as their name implies, are usually completely filled with hot water during their operation, while steam boilers are filled with water only until the ¾ mark, with the top fourth of the boiler reserved for steam.
All boilers, whether hot water or steam, depend on fuel to run. The heating process is initiated when the burner heats or evaporates the water inside it, which is ultimately transported via pipe systems. Hot water boilers rely on pumps to move the heat through the system, while steam boilers are transported with the pressure generated in the heating process. Eventually, cooled water or condensed steam is returned back through the pipes to the boiler system so that it can be heated once again. While the boiler is generating energy in the form of heat, flue gases, a byproduct of this process, are removed through a chimney system - which is why regulating the emissions of industrial boilers is taken very seriously.
There are a number of considerations to factor when determining the best boiler for your steam generation needs like operating pressure, steam pounds/hour output, demand fluctuation, general application requirments and total cost of ownership, etc.
Two primary boiler types, the firetube boiler and the watertube boiler, are essentially opposite in design. The firetube boiler passes combustion gas inside a series of tubes surrounded by water in a vessel to produce steam, while a watertube instead sends water through a series of tubes surrounded by combustion gas used to transfer heat energy and produce steam.