1. The control system is equipped with a special computer controller, which makes the boiler running clear and easy to operate.
2. The burner is controlled by full-automatic program, and in case of failure, the burner stops automatically.
3. The boiler body is designed with reasonable structure, and the top is equipped with air vent. The boiler works under normal pressure and is far away from explosion danger. The full wet back three-way structure and corrugated tank design are adopted. The flue gas process is long, the temperature of exhaust gas is reduced, the heat transfer coefficient is increased, and the equipment life is prevented from being reduced due to the expansion and contraction of metal.
Generally, there is moisture in heat medium oil. And, the moisture will be evaporated during the heating process of the oil. If the water vapor is not discharged from the thermal oil heater, it will cause the fluctuation of heat medium oil pressure. However, the oil-gas separator can separate the water vapor from the heat medium oil and discharge it from the heater, which ensures the stable oil pressure.
The selection of a burner of the gas-fired thermal oil heater should be determined according to the boiler proper structure and fuel characteristics and in combination with the actual conditions and requirements. In addition, this kind of boiler can adopt a waste heat recovery device to improve thermal efficiency and reduce heat energy loss.
Maintenance of the burner: thoroughly clean the rotor plate, ignition device, filter, oil pump, motor and impeller system, and add lubricant to the connecting rod device of air valve. Retest the combustion condition.
The gas consumption of 10 tph gas-fired boiler is related to technical parameters.
Such as heating surface layout, heat preservation effect, heat loss, water capacity, etc. The calculation formula of gas consumption of 10 tph gas-fired boiler is as follows:
=10 tph gas-fired boiler output÷ thermal efficiency ÷calorific value of natural gas
= 6,000,000 kcal ÷ 0.98 ÷ 8,600 kcal / h = 712 m3
Therefore, the gas consumption of 10 tph gas-fired boiler is 712 m3/ h
The gas consumption of the above gas-fired boiler is calculated at full capacity. In practice, the gas consumption changes with the operation load and operation conditions. In addition, if thermal efficiency of the gas-fired boiler is different, the gas consumption is different, too. The higher thermal efficiency is, the lower gas consumption is.
Advantages: the efficiency of electric dust collector can reach up to about 99%; large gas handling capacity; low flue gas flow rate, low resistance and low operation costs. Shortcomings: complex structure; large size, large area covering; high investments; complex maintenance; special requirements for dust resistance.
Combustion efficiency is an indication of the burner’s ability to burn fuel. The amount of unburned fuel and excess air in the exhaust are used to assess a burner’s combustion efficiency. Burners resulting in low levels of unburned fuel while operating at low excess air levels are considered efficient. Well designed conventional burners firing gaseous and liquid fuels operate at excess air levels of 15% and result in negligible unburned fuel. Well designed ultra low emissions burners operate at a higher excess air level of 25% in order to reduce emissions to very low levels. By operating at the minimum excess air requirement, less heat from the combustion process is being used to heat excess combustion air, which increases the energy available for the load. Combustion efficiency is not the same for all fuels and, generally, gaseous and liquid fuels burn more efficiently than solid fuels.
Stack temperature is the temperature of the combustion gases (dry and water vapor) leaving the boiler. A well-designed boiler removes as much heat as possible from the combustion gases. Thus, lower stack temperature represents more effective heat transfer and lower heat loss up the stack. The stack temperature reflects the energy that did not transfer from the fuel to steam or hot water. Stack temperature is a visible indicator of boiler efficiency. Any time efficiency is guaranteed, predicted stack temperatures should be verified.
Stack loss is a measure of the amount of heat carried away by dry flue gases (unused heat) and the moisture loss (product of combustion), based on the fuel analysis of the specific fuel being used, moisture in the combustion air, etc.