Stack temperature is the temperature of the combustion gases (dry and water vapor) leaving the boiler. A well-designed boiler removes as much heat as possible from the combustion gases. Thus, lower stack temperature represents more effective heat transfer and lower heat loss up the stack. The stack temperature reflects the energy that did not transfer from the fuel to steam or hot water. Stack temperature is a visible indicator of boiler efficiency. Any time efficiency is guaranteed, predicted stack temperatures should be verified.
Stack loss is a measure of the amount of heat carried away by dry flue gases (unused heat) and the moisture loss (product of combustion), based on the fuel analysis of the specific fuel being used, moisture in the combustion air, etc.
Condensing boilers can achieve up to 98% thermal efficiency, compared to 70%-80% with conventional designs (based on the higher heating value of fuels). Typical models offer efficiencies over 90% when the return water temperature is at 110 ºF or less; the lower the return water temperature, the higher the efficiency gain.
This is because, under normal circumstances, the exhaust temperature of the boiler cannot completely condense the water in the flue gas, and the difference between the low calorific value and the high calorific value is mainly in the part of the latent heat of vaporization, so the low heat is used. The value is calculated to reflect the true efficiency of the boiler. However, there will be some special circumstances. For example, if the boiler is a condensing boiler, the calculation of the condensed water portion should be calculated using the high calorific value.
1. Your existing system is inefficient
Efficiency is key when it comes to plant heating. Utilizing efficient equipment can save your company a significant amount of money in the long run and it is better for the environment. If you know that your existing system is not as efficient as it could be and it is in need of repair, it may be worth looking into thermal oil system replacement.
2. Your existing system features helical coil technology
Helical coils are common in thermal oil heaters from most manufacturers. But there are many reasons why serpentine coils are the better way to go when it comes to thermal fluid heating. Repairs to helical coils can be so expensive and time consuming that in many cases you are better off investing in new equipment – and it is well worth it to consider a new thermal oil system that features serpentine coil technology instead.
Package boiler is a boiler that had been fabricated and available as a complete package. The entire pressure parts have been assembled in the workshop and ready to be sent to the field or site where power plant is located. On the field/site requires only connection and integration of course work in electrical connections, water pipes, steam pipes and fuel piping system to operate. Package boiler is one of classification of boiler based on erection. Design package boilers in general are the type of Fire Tube Boiler and have made up shell and tubes. This type has high heat transfer both radiation and convection.
Retrofitting a piece of equipment or an existing industrial heating system can be very challenging, but it can be especially frustrating if you haven't planned well ahead of time. You'll want to be sure that you've done your homework to ensure that retrofitting the piece of equipment you have in the way you have in mind is actually possible.
If it is possible, you'll want to work with the appropriate engineers to figure out exactly what it will entail, how much it will cost, what impact it will have on operations, etc.
The combustion air preheater is definitely one of heat exchanger applications. Based on Figure 1 below, flue gas simply leaves steam boiler and passes via air preheater. The combustion air is passed through this equipment too to increase its temperature before being combined with boiler fuel.
Because the temperature of combustion air is lower than the temperature of flue gas, combustion air receive heat transfer from flue gas through combustion air preheater in the process of convection heat transfer. The heat transfer make temperature of flue gas lower and consequently minimizes its heat loss and also decreases the air temperature to stack.
ASME code – also known by its longer name: ASME Boiler & Pressure Vessel Code – regulates the design, development, and manufacturing of boilers used in a variety of industries and applications.
This code was developed by the American Society of Mechanical Engineers, an organization that has been around for well over 100 years and is focused on establishing safety codes and standards for mechanical equipment.
Within the industrial heating industry, ASME code is the established standard that many pieces of equipment are built to.
Heating systems that adhere to the specifications set forth by ASME code have been constructed according to guidelines intended to promote safety and quality. As such, heating equipment that is ASME code compliant has been thoroughly inspected to assure that it meets high safety and quality standards.