The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
A steam boiler plant must operate safely, with maximum combustion and heat transfer efficiency. To help achieve this and a long, low-maintenance life, the boiler water can be chemically treated.
The operating objectives for steam boiler plant include:
Safe operation.
Maximum combustion and heat transfer efficiency.
Minimum maintenance.
Long working life.
The quality of the water used to produce the steam in the boiler will have a profound effect on meeting these objectives.
This is because, under normal circumstances, the exhaust temperature of the boiler cannot completely condense the water in the flue gas, and the difference between the low calorific value and the high calorific value is mainly in the part of the latent heat of vaporization, so the low heat is used. The value is calculated to reflect the true efficiency of the boiler. However, there will be some special circumstances. For example, if the boiler is a condensing boiler, the calculation of the condensed water portion should be calculated using the high calorific value.
ead below for our top three benefits to purchasing a low NOx heater for your facility.
They're Environmentally Friendly
When NO2 and NOx are released, they interact with other chemicals in the atmosphere that is harmful to the environment. The EPA has linked NOx emissions contributing to acid rain, smog, global warming, and smog. By using a low NOx heater, you greatly reduce NO2 pollution in the atmosphere.
Interested in decreasing waste and emissions? Learn why your facility needs a waste recovery unit.
They're Safer For Your Employees
According to the EPA, exposure to nitrogen oxides has been found to contribute to respiratory problems and diseases, like asthma. By installing a low NOx heater, you're potentially preventing damage to your employee's lungs.
They're More Efficient
As our low NOx heaters are built using a serpentine coil technology, they have space between the coil tubes which renders them 10 to 15% more efficient that hot oil heaters that feature helical coils.
In a boiler, energy from the fuel is transferred to liquid water in order to create steam. Once the water is heated to boiling point, it is vaporized and turned into saturated steam. When saturated steam is heated above boiling point, dry steam is created and all traces of moisture are erased. This is called superheated steam.
Industrial boilers are welded from sturdy steel plates that are engineered to withstand intense heat and pressure - as a result of this thick steel, boilers can sometimes weigh as much as 165 tons! The construction of hot water boilers and steam boilers is very similar. They both feature a cylinder tube, otherwise known as the pressure vessel. The pressure vessel contains something called a flame tube, which is fired through a burner and a reversing chamber that feeds flue gases back through a second smoke tube. These flue gases are reversed again via an external reversing chamber. This reversing chamber sends the flue gases to the end of the boiler, in the third smoke tube pass. A major difference between hot water industrial boilers and the steam versions? Hot water boilers, as their name implies, are usually completely filled with hot water during their operation, while steam boilers are filled with water only until the ¾ mark, with the top fourth of the boiler reserved for steam.
All boilers, whether hot water or steam, depend on fuel to run. The heating process is initiated when the burner heats or evaporates the water inside it, which is ultimately transported via pipe systems. Hot water boilers rely on pumps to move the heat through the system, while steam boilers are transported with the pressure generated in the heating process. Eventually, cooled water or condensed steam is returned back through the pipes to the boiler system so that it can be heated once again. While the boiler is generating energy in the form of heat, flue gases, a byproduct of this process, are removed through a chimney system - which is why regulating the emissions of industrial boilers is taken very seriously.
There are a number of considerations to factor when determining the best boiler for your steam generation needs like operating pressure, steam pounds/hour output, demand fluctuation, general application requirments and total cost of ownership, etc.
Two primary boiler types, the firetube boiler and the watertube boiler, are essentially opposite in design. The firetube boiler passes combustion gas inside a series of tubes surrounded by water in a vessel to produce steam, while a watertube instead sends water through a series of tubes surrounded by combustion gas used to transfer heat energy and produce steam.