Boiler efficiency is mainly depended on the amount of losses in the system. In high capacity pulverized coal fired boilers the total losses account to about 12 to 14%. Roughly 50% of the losses are governed by fuel properties like hydrogen in fuel, moisture in fuel and ambient air conditions. The other 50% losses are carbon loss and dry gas loss. The best efficiency in the boiler can be achieved if the losses are kept to the minimum. Since 50% of the losses are dependent on the fuel and ambient condition, the best efficiency can be achieved by properly tuning the other 50%, i.e. mainly carbon loss and dry gas loss.
Biomass-fired boilers need to be shut down for maintenance. Proper maintenance can reduce the damage to the boiler caused by continuous work. Firstly, it is necessary to cut off all power to prevent being struck by lightning. In addition, dust, limescale and carbon deposits should be cleaned up to prevent rust and corrosion of the boiler.
1. The storage tank is used to store the heat medium oil of the heating system;
2. The storage tank is used to receive the overrunning heat medium oil;
3. The storage tank is used to supplement heat medium oil for the heating system;
4. The storage tank should be placed at the lowest position of the system;
5. A firewall should be placed between the storage tank and the thermal oil heater;
6. The storage tank should be operated at a low liquid level.
The gas consumption of 10 tph gas-fired boiler is related to technical parameters.
Such as heating surface layout, heat preservation effect, heat loss, water capacity, etc. The calculation formula of gas consumption of 10 tph gas-fired boiler is as follows:
=10 tph gas-fired boiler output÷ thermal efficiency ÷calorific value of natural gas
= 6,000,000 kcal ÷ 0.98 ÷ 8,600 kcal / h = 712 m3
Therefore, the gas consumption of 10 tph gas-fired boiler is 712 m3/ h
The gas consumption of the above gas-fired boiler is calculated at full capacity. In practice, the gas consumption changes with the operation load and operation conditions. In addition, if thermal efficiency of the gas-fired boiler is different, the gas consumption is different, too. The higher thermal efficiency is, the lower gas consumption is.
Condensing boilers can achieve up to 98% thermal efficiency, compared to 70%-80% with conventional designs (based on the higher heating value of fuels). Typical models offer efficiencies over 90% when the return water temperature is at 110 ºF or less; the lower the return water temperature, the higher the efficiency gain.
Circulating fluidized bed boiler is a specific type of boilers, and compared with the other boilers, it has certain advantages, which are: it has great improvement in combustion technology, which can improve the boiler combustion quality and combustion effect, and in turn, to improve the boiler effect. This is achieved because two return feeders are used in this type of boiler to allow the fuel to form a circulation loop between the furnace and the return feeder.
ASME code – also known by its longer name: ASME Boiler & Pressure Vessel Code – regulates the design, development, and manufacturing of boilers used in a variety of industries and applications.
This code was developed by the American Society of Mechanical Engineers, an organization that has been around for well over 100 years and is focused on establishing safety codes and standards for mechanical equipment.
Within the industrial heating industry, ASME code is the established standard that many pieces of equipment are built to.
Heating systems that adhere to the specifications set forth by ASME code have been constructed according to guidelines intended to promote safety and quality. As such, heating equipment that is ASME code compliant has been thoroughly inspected to assure that it meets high safety and quality standards.
The choice between a steam system or a thermal fluid system is governed by the process requirements. The range or process temperature is a deciding factor. If the system’s required temperature is above the freezing point of water (0°C) and below approximately 160°C, the choice is usually steam. However, if the required temperature is above 160°C, thermal fluid may be a better solution. Thermal oil heater systems can be designed with maximum operating temperatures to 325°C.