When the oil temperature rises to a certain temperature that the oil and gas molecules on the surface of the oil tend to saturate, can catch fire and maintain continuous combustion for a duration of not less than 5S. The temperature is called ignition point.
Fuel freezing point is the temperature at which the fuel loses fluidity. It is an important index that indicates the fuel flows at low temperatures. It often refers to the maximum temperature at which the oil surface remains stationary within 1 minute. The higher the fuel freezing point, the lower the low-temperature fluidity. When the oil temperature is below the freezing point, it cannot be transported in the pipeline.
The selection of a burner of the gas-fired thermal oil heater should be determined according to the boiler proper structure and fuel characteristics and in combination with the actual conditions and requirements. In addition, this kind of boiler can adopt a waste heat recovery device to improve thermal efficiency and reduce heat energy loss.
Maintenance of the burner: thoroughly clean the rotor plate, ignition device, filter, oil pump, motor and impeller system, and add lubricant to the connecting rod device of air valve. Retest the combustion condition.
The gas consumption of 10 tph gas-fired boiler is related to technical parameters.
Such as heating surface layout, heat preservation effect, heat loss, water capacity, etc. The calculation formula of gas consumption of 10 tph gas-fired boiler is as follows:
=10 tph gas-fired boiler output÷ thermal efficiency ÷calorific value of natural gas
= 6,000,000 kcal ÷ 0.98 ÷ 8,600 kcal / h = 712 m3
Therefore, the gas consumption of 10 tph gas-fired boiler is 712 m3/ h
The gas consumption of the above gas-fired boiler is calculated at full capacity. In practice, the gas consumption changes with the operation load and operation conditions. In addition, if thermal efficiency of the gas-fired boiler is different, the gas consumption is different, too. The higher thermal efficiency is, the lower gas consumption is.
The function of the burner is to send the fuel and air into the furnace constantly, organize the air flow of pulverized coal reasonably and mix them well for rapid and stable ignition and combustion.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
The function of high and low level alarms. Low-level alarms will draw attention to low boiler water level and, if required, shut down the boiler. High-level alarms protect plant and processes.
Where boilers are operated without constant supervision (which includes the majority of industrial boilers) low water level alarms are required to shut down the boiler in the event of a lack of water in the boiler. Low level may be caused by: