The inlet gas pressure is different for different capacity boiler, for example, the pressure for 2 ton steam capacity boiler is about 8~10KPa, while for 4 ton steam capacity boiler is about 12~25KPa. You can tell us the boiler capacity you want, we will help you to get the gas inlet pressure.
Compared with the price of a traditional coal-fired boiler, the operation cost of a gas-fired boiler is relatively high. So, users need to consider the price and quality before purchasing a boiler. For a gas-fired boiler, the energy-saving performance is more important than the boiler price. One year is enough for a gas-fired boiler with good energy-saving performance to save the extra costs of the boiler proper. And, the gas consumption is an important indicator to measure the energy-saving performance of a boiler.
Although biomass-fired boilers are environment-friendly boiler products, there are also some situations that biomass-fired boilers can’t be used. Main reasons as follows:
Fuel restrictions: The fuels that contain synthetic compounds can’t be used as the fuel of a biomass-fired boiler, such as waste wood furniture, waste paper, production and domestic waste.
The gas consumption of 10 tph gas-fired boiler is related to technical parameters.
Such as heating surface layout, heat preservation effect, heat loss, water capacity, etc. The calculation formula of gas consumption of 10 tph gas-fired boiler is as follows:
=10 tph gas-fired boiler output÷ thermal efficiency ÷calorific value of natural gas
= 6,000,000 kcal ÷ 0.98 ÷ 8,600 kcal / h = 712 m3
Therefore, the gas consumption of 10 tph gas-fired boiler is 712 m3/ h
The gas consumption of the above gas-fired boiler is calculated at full capacity. In practice, the gas consumption changes with the operation load and operation conditions. In addition, if thermal efficiency of the gas-fired boiler is different, the gas consumption is different, too. The higher thermal efficiency is, the lower gas consumption is.
The oil and air must be mixed for the combustion of the fuel droplets to take place. The combustion speed depends on the evaporation speed of oil droplets and the mixing speed of oil and air. The evaporation speed of oil droplets is related to the diameter and temperature of oil droplets. The smaller the fuel droplets, the higher the temperature and the faster the evaporation. On the other hand, it is conducive to mixing and combustion. The smaller the fuel droplets, the larger the air contract surface. Therefore, the fuel oil must be atomized before combustion. And, the oil can be heated and evaporated rapidly and fully burnt after it is injected to the furnace.
Firstly, the combustion of biomass fuel is easy to control. The fuel is easy to ignite. Besides, the combustion speed is faster than that of coal.
Secondly, the biomass-fired boiler can be ignited and extinguished at any time while the coal-fired boiler cannot. The biomass-fired boiler can also be ignited automatically.
Thirdly, the biomass-fired boiler can achieve zero emission of sulfur dioxide, which belongs to environment-friendly boilers.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
A steam boiler plant must operate safely, with maximum combustion and heat transfer efficiency. To help achieve this and a long, low-maintenance life, the boiler water can be chemically treated.
The operating objectives for steam boiler plant include:
Safe operation.
Maximum combustion and heat transfer efficiency.
Minimum maintenance.
Long working life.
The quality of the water used to produce the steam in the boiler will have a profound effect on meeting these objectives.