The combustion air preheater is definitely one of heat exchanger applications. Based on Figure 1 below, flue gas simply leaves steam boiler and passes via air preheater. The combustion air is passed through this equipment too to increase its temperature before being combined with boiler fuel.
Because the temperature of combustion air is lower than the temperature of flue gas, combustion air receive heat transfer from flue gas through combustion air preheater in the process of convection heat transfer. The heat transfer make temperature of flue gas lower and consequently minimizes its heat loss and also decreases the air temperature to stack.
Economizer is one of steam boiler’s equipment which is used to heat feedwater before it is supplied into steam drum. Economizer is the heat exchanger equipment to increase boiler efficiency by absorbing heat recovery of flue gases. The lower temperature of flue gas out from stack, the heat loss will be less and the fuel which is needed to convert water into steam will be also less in certain circumstances. So it can be said that economizer can save the fuel efficiently. Economizer will make temperature of feedwater higher, so steam boiler can produce steam easily.
Wood fuel has several environmental advantages compared with fossil fuels. Wood can be continually replenished, which leads to a sustainable and dependable supply. However, proper forest management must be practiced to ensure that growing conditions are not degraded during biomass production.
There is little net production of carbon dioxide from wood combustion, because the CO2 generated during combustion of wood equals the CO2 consumed during the lifecycle of the tree. Transporting the material using petroleum generates excess CO2.
The primary objective of an industrial boiler is the generation of steam. Steam is generated by heat transfer at a constant pressure. The fluid, which is initially in a liquid state, is heated, produces a variation in its phase and becomes saturated vapour.
This saturated steam can then be used for different applications such as sterilization, fluid heating or electricity generation.
Industrial boilers are machines or engineering devices whose primary objective is the generation of steam. The heat that is generated, which can come from any energy source, causes it to be transformed into energy for use, either through a liquid phase medium or steam.
Water, which is the primary fluid inside the closed metal container of the industrial boiler, is heated to an atmospheric temperature and a pressure higher than the external one. Once the steam is generated, it advances through the pipes.
In superheated industrial water boilers, the water is pressurized and boiled to 100°C producing steam. These boilers are pyrotubular, with a high volume of water and a large temperature exchange zone. The designs can adapt to temperatures and pressures according to needs.
Biomass steam boilers recover the heat generated during the biomass combustion process to heat the water in the boiler exchanger circuit. The hot water is then diverted to the heating circuit.
Occasionally it is necessary to remove the ashes generated by biomass combustion and clean the burner.