The inlet gas pressure is different for different capacity boiler, for example, the pressure for 2 ton steam capacity boiler is about 8~10KPa, while for 4 ton steam capacity boiler is about 12~25KPa. You can tell us the boiler capacity you want, we will help you to get the gas inlet pressure.
The gas consumption of 10 tph gas-fired boiler is related to technical parameters.
Such as heating surface layout, heat preservation effect, heat loss, water capacity, etc. The calculation formula of gas consumption of 10 tph gas-fired boiler is as follows:
=10 tph gas-fired boiler output÷ thermal efficiency ÷calorific value of natural gas
= 6,000,000 kcal ÷ 0.98 ÷ 8,600 kcal / h = 712 m3
Therefore, the gas consumption of 10 tph gas-fired boiler is 712 m3/ h
The gas consumption of the above gas-fired boiler is calculated at full capacity. In practice, the gas consumption changes with the operation load and operation conditions. In addition, if thermal efficiency of the gas-fired boiler is different, the gas consumption is different, too. The higher thermal efficiency is, the lower gas consumption is.
A steam boiler plant must operate safely, with maximum combustion and heat transfer efficiency. To help achieve this and a long, low-maintenance life, the boiler water can be chemically treated.
The operating objectives for steam boiler plant include:
Safe operation.
Maximum combustion and heat transfer efficiency.
Minimum maintenance.
Long working life.
The quality of the water used to produce the steam in the boiler will have a profound effect on meeting these objectives.
Evaporation phase occurs in water wall tubes. Evaporation is the process to convert water into steam. Therefore water wall tubes should be designed and constructed to provide high heat absorption, minimum excess air level and highest boiler efficiency. Construction of water wall tubes should be also constructed to prevent air leakage into steam boiler, eliminate amount of heat losses and permit high heat release and combustion rate in the furnace.
Construction of water wall tubes must provide high quality of the supporting component such as tubes, casing, refractory, lagging, tile, fin, and so on. Best construction will reduce heat loss and maintenance. Construction of water wall tubes can be classified into four types such as:
All boilers, whether hot water or steam, depend on fuel to run. The heating process is initiated when the burner heats or evaporates the water inside it, which is ultimately transported via pipe systems. Hot water boilers rely on pumps to move the heat through the system, while steam boilers are transported with the pressure generated in the heating process. Eventually, cooled water or condensed steam is returned back through the pipes to the boiler system so that it can be heated once again. While the boiler is generating energy in the form of heat, flue gases, a byproduct of this process, are removed through a chimney system - which is why regulating the emissions of industrial boilers is taken very seriously.
There are a number of considerations to factor when determining the best boiler for your steam generation needs like operating pressure, steam pounds/hour output, demand fluctuation, general application requirments and total cost of ownership, etc.
Two primary boiler types, the firetube boiler and the watertube boiler, are essentially opposite in design. The firetube boiler passes combustion gas inside a series of tubes surrounded by water in a vessel to produce steam, while a watertube instead sends water through a series of tubes surrounded by combustion gas used to transfer heat energy and produce steam.
The pressure of the steam is directly related to its temperature. So process temperature will require steam used to be at a specified pressure. For example, a process requires that needs temperatures at 150°C will require steam delivered at 6 Kg/cm2 or higher.
(Question Details) Specific Performance:The pipe of superheater bursts in circulating fluidized bed boiler operation.The bed pressure indicator fluctuates little. Answer: causes of failure:(1) Design Factors.(2) Manufacturing process, installation and maintenance quality.(3) The temperature control device is unreasonable or does not work properly.(4) Effect of operating conditions on overheating and explosion of superheater. Troubleshooting:(1) Report the fact to operator on duty and require operating the boiler in low load.(2) When the overheat damage is serious,please report it to operator on duty and require stoping the boiler immediately to prevent blowout of the near pipes.(3) Adjust the steam temperature as much as possible within the normal range.(4) If the superheater tube is not damaged badly, it has little effect on the temperature level of the steam, and it can be allowed to run in a low load range for a short period of time.