When using the industrial gas-fired boilers, daily boiler operation and management should be paid attention to ensure the safe and stable boiler operation, so as to guarantee the daily production of workshop.
The dry bottom hopper is formed by bending the lower part of the water wall of the front and rear walls inward. The main function is to gather, cool and automatically discharge ash. It is also convenient for the connection and sealing of the lower header and the ash well.
The function of the burner is to send the fuel and air into the furnace constantly, organize the air flow of pulverized coal reasonably and mix them well for rapid and stable ignition and combustion.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
The term “boiler efficiency” is often substituted for thermal efficiency or fuel-to-steam efficiency. When the term “boiler efficiency” is used, it is important to know which type of efficiency is being represented. Why? Because thermal efficiency, which does not account for radiation and convection losses, is not an indication of the true boiler efficiency. Fuelto-steam efficiency, which does account for radiation and convection losses, is a true indication of overall boiler efficiency. The term “boiler efficiency” should be defined by the boiler manufacturer before it is used in any economic evaluation.
A process load is usually a high-pressure steam load. A process load pertains to manufacturing operations, where heat from steam or hot water is used in the process. A process load is further defined as either continuous or batch. In a continuous load, the demand is fairly constant - such as in a heating load. The batch load is characterized by short-term demands. The batch load is a key issue when selecting equipment, because a batch-type process load can have a very large instantaneous demand that can be several times larger than the rating of the boiler. For example, based on its size, a heating coil can consume a large amount of steam simply to fill and pressurize the coil. When designing a boiler room for a process load with instantaneous demand, a more careful boiler selection process should take place.
System load is measured in either BTUs or tons of steam (at a specific pressure and temperature). It would be nearly impossible to size and select a boiler(s) without knowing the system load requirements. Knowing the requirements leads to the following information:
The boiler(s) capacity, taken from the maximum system load requirement.
The boiler(s) turndown, taken from the minimum system load requirement.
Conditions for maximum efficiency, taken from the average system load requirement.
Determining the total system load requires an understanding of the type(s) of load in the system. There are three types of loads: heating, process, and combination.
Retrofitting a piece of equipment or an existing industrial heating system can be very challenging, but it can be especially frustrating if you haven't planned well ahead of time. You'll want to be sure that you've done your homework to ensure that retrofitting the piece of equipment you have in the way you have in mind is actually possible.
If it is possible, you'll want to work with the appropriate engineers to figure out exactly what it will entail, how much it will cost, what impact it will have on operations, etc.