1. Sufficient furnace temperature: Sufficient fuel combustion of biomass-fired boilers firstly requires high furnace temperature. The temperature should meet the requirements of sufficient fuel combustion. Besides, the combustion speed is required to be proportional to the temperature. Moreover, the furnace temperature should be raised as much as possible on the premise that slag is not formed in the furnace.
The function of the burner is to send the fuel and air into the furnace constantly, organize the air flow of pulverized coal reasonably and mix them well for rapid and stable ignition and combustion.
The oil and air must be mixed for the combustion of the fuel droplets to take place. The combustion speed depends on the evaporation speed of oil droplets and the mixing speed of oil and air. The evaporation speed of oil droplets is related to the diameter and temperature of oil droplets. The smaller the fuel droplets, the higher the temperature and the faster the evaporation. On the other hand, it is conducive to mixing and combustion. The smaller the fuel droplets, the larger the air contract surface. Therefore, the fuel oil must be atomized before combustion. And, the oil can be heated and evaporated rapidly and fully burnt after it is injected to the furnace.
Firstly, the combustion of biomass fuel is easy to control. The fuel is easy to ignite. Besides, the combustion speed is faster than that of coal.
Secondly, the biomass-fired boiler can be ignited and extinguished at any time while the coal-fired boiler cannot. The biomass-fired boiler can also be ignited automatically.
Thirdly, the biomass-fired boiler can achieve zero emission of sulfur dioxide, which belongs to environment-friendly boilers.
1. The fuel volume is 1 / 30 ~ 40 of the raw material volume after molding;
2. The specific gravity is 10-15 times of the raw material, and the moisture content is between 12% and 18% (the moisture content of coal is below 10-15);
3. The net calorific value can reach 3500-4500 kcal (the net calorific value of class II bituminous coal is 3700-4700 kcal / kg);
4. The ash content is less than 10% (the ash content of coal is more than 20%);
5. Volatile matter ≥ 65.62% (volatile matter of class II bituminous coal≥20%).
6. Biomass fuel belongs to renewable clean energy, which is the same as wind energy and solar energy. The biomass fuel is rich in resources, it can ensure the sustainable use of energy.
7. The sulfur content and nitrogen content of biomass fuel are low, the amount of SOx and NOx generated in the combustion process is low.
Advantages: the efficiency of electric dust collector can reach up to about 99%; large gas handling capacity; low flue gas flow rate, low resistance and low operation costs. Shortcomings: complex structure; large size, large area covering; high investments; complex maintenance; special requirements for dust resistance.
The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.