The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
A steam boiler plant must operate safely, with maximum combustion and heat transfer efficiency. To help achieve this and a long, low-maintenance life, the boiler water can be chemically treated.
The operating objectives for steam boiler plant include:
Safe operation.
Maximum combustion and heat transfer efficiency.
Minimum maintenance.
Long working life.
The quality of the water used to produce the steam in the boiler will have a profound effect on meeting these objectives.
The term “boiler efficiency” is often substituted for thermal efficiency or fuel-to-steam efficiency. When the term “boiler efficiency” is used, it is important to know which type of efficiency is being represented. Why? Because thermal efficiency, which does not account for radiation and convection losses, is not an indication of the true boiler efficiency. Fuelto-steam efficiency, which does account for radiation and convection losses, is a true indication of overall boiler efficiency. The term “boiler efficiency” should be defined by the boiler manufacturer before it is used in any economic evaluation.
A process load is usually a high-pressure steam load. A process load pertains to manufacturing operations, where heat from steam or hot water is used in the process. A process load is further defined as either continuous or batch. In a continuous load, the demand is fairly constant - such as in a heating load. The batch load is characterized by short-term demands. The batch load is a key issue when selecting equipment, because a batch-type process load can have a very large instantaneous demand that can be several times larger than the rating of the boiler. For example, based on its size, a heating coil can consume a large amount of steam simply to fill and pressurize the coil. When designing a boiler room for a process load with instantaneous demand, a more careful boiler selection process should take place.
Loads vary, and a power plant must be capable of handling the minimum load, the maximum load, and any load variations. Boiler selection is often dictated by the variation in load demand, rather than by the total quantity of steam or hot water required. There are three basic types of load variations: seasonal, daily, and instantaneous.
System load is measured in either BTUs or tons of steam (at a specific pressure and temperature). It would be nearly impossible to size and select a boiler(s) without knowing the system load requirements. Knowing the requirements leads to the following information:
The boiler(s) capacity, taken from the maximum system load requirement.
The boiler(s) turndown, taken from the minimum system load requirement.
Conditions for maximum efficiency, taken from the average system load requirement.
Determining the total system load requires an understanding of the type(s) of load in the system. There are three types of loads: heating, process, and combination.
Stack temperature is the temperature of the combustion gases (dry and water vapor) leaving the boiler. A well-designed boiler removes as much heat as possible from the combustion gases. Thus, lower stack temperature represents more effective heat transfer and lower heat loss up the stack. The stack temperature reflects the energy that did not transfer from the fuel to steam or hot water. Stack temperature is a visible indicator of boiler efficiency. Any time efficiency is guaranteed, predicted stack temperatures should be verified.
Stack loss is a measure of the amount of heat carried away by dry flue gases (unused heat) and the moisture loss (product of combustion), based on the fuel analysis of the specific fuel being used, moisture in the combustion air, etc.