The causes of coal erosion as distinct from all the other types of erosion are many but from a theoretical point of view are simply high velocity particles impacting and rubbing along the surface of the tubes.
The boiler designer minimises this by providing a volume in the furnace and a direction of travel of the coal such that it is burned before it can touch the tubes. This can be defeated by increasing the velocity reducing the combustibility or increasing the mass flow. All of these parameters occur if you reduce the calorific value of the fuel or overload the boiler. If you had no erosion before changing your fuel that is the cause. If you have never had design fuel you dont know if it would have eroded anyway. If it would the cause will be a different reason such as arodynamic flows and aiming of the burner or size of the tartget fireball centre. This is a serious problem and should be dealt with by an experienced expert.
Few parameters critical to health of the Boiler are
(4)Heat rate of the Boiler. This is a composite index of many performance indicators. Most of them will appear below.
(5)Unburnt fuel in flue gas and at boiler bottom .
(6)Flue gas furnace exit temperature.
(7)Boiler tube metal temperatures.
(8)Oxygen in flue gas.
(9)Imbalances in flue gas temperature over a cross section.
(10)Spray water consumption in Super heater and Reheater.
(11)Heat radiation from insulation.
The above all affects the performance of the boiler.
The coal-fired steam boiler is a forced circulation high-pressure single-tube DC boiler. Its operation process includes three processes: the combustion process of the fuel, the heat transfer process of flue gas to water and the vaporization process after water absorbs heat. In order to better control these different processes, the control system should make
the heat of pulverized coal combustion adapt to the requirements of steam load changes and dryness.
If the following three conditions occur during the burning and flame out process of a gas-fired boiler, the furnace is likely to blow up.
1.The residual gas content in the furnace reaches the ignition limit at the start-up phase of the furnace.
2.The fuel content in the furnace reaches the ignition limit after several times failure of ignition.
3.The fuel is sprayed out because of the halfway extinction of the flame. And, the temperature of the furnace can not meet the spontaneous combustion condition of the sprayed fuel. However, the content of the sprayed fuel reaches the ignition limit.
1. The control system is equipped with a special computer controller, which makes the boiler running clear and easy to operate.
2. The burner is controlled by full-automatic program, and in case of failure, the burner stops automatically.
3. The boiler body is designed with reasonable structure, and the top is equipped with air vent. The boiler works under normal pressure and is far away from explosion danger. The full wet back three-way structure and corrugated tank design are adopted. The flue gas process is long, the temperature of exhaust gas is reduced, the heat transfer coefficient is increased, and the equipment life is prevented from being reduced due to the expansion and contraction of metal.
If the circulating pump of a thermal oil heater stops working suddenly. Then, some measures should be taken immediately to remove the fire source. If not, the stop of circulating pump will cause coking in the oil tube, which will shorten the service life of the heater.
Loads vary, and a power plant must be capable of handling the minimum load, the maximum load, and any load variations. Boiler selection is often dictated by the variation in load demand, rather than by the total quantity of steam or hot water required. There are three basic types of load variations: seasonal, daily, and instantaneous.
System load is measured in either BTUs or tons of steam (at a specific pressure and temperature). It would be nearly impossible to size and select a boiler(s) without knowing the system load requirements. Knowing the requirements leads to the following information:
The boiler(s) capacity, taken from the maximum system load requirement.
The boiler(s) turndown, taken from the minimum system load requirement.
Conditions for maximum efficiency, taken from the average system load requirement.
Determining the total system load requires an understanding of the type(s) of load in the system. There are three types of loads: heating, process, and combination.