There are a number of considerations to factor when determining the best boiler for your steam generation needs like operating pressure, steam pounds/hour output, demand fluctuation, general application requirments and total cost of ownership, etc.
Two primary boiler types, the firetube boiler and the watertube boiler, are essentially opposite in design. The firetube boiler passes combustion gas inside a series of tubes surrounded by water in a vessel to produce steam, while a watertube instead sends water through a series of tubes surrounded by combustion gas used to transfer heat energy and produce steam.
Safety is always a top priority when working with industrial boilers, at least it should be. Fortunately, safety has become less of an issue with more modern water tube boilers. Compared to traditional fire tube boilers, water tube boilers are far safer, almost to the point where you don’t have to worry about a catastrophic explosion taking place.
The choice between a steam system or a thermal fluid system is governed by the process requirements. The range or process temperature is a deciding factor. If the system’s required temperature is above the freezing point of water (0°C) and below approximately 160°C, the choice is usually steam. However, if the required temperature is above 160°C, thermal fluid may be a better solution. Thermal oil heater systems can be designed with maximum operating temperatures to 325°C.
A fire tube steam boiler is a boiler where the combustion gases from the burner are channeled through tubes that are surrounded by the fluid to be heated. The boiler body is the pressure vessel and contains the fluid. In most cases, this fluid is water that will circulate for heating purposes or become steam for use in processing.
Each set of tubes through which the combustion gas passes, before making a turn, is considered a "step". Consequently, a three-step boiler will have three sets of pipes with the outlet located at the rear of the boiler.
The action of starting up a fire tube boiler for the first time is already a cold start. As a result, the mechanical load in this type of boiler is much greater, as the main characteristic of cold starts is the absence of boiling water and greater stress on the connection and anchorage elements of the boiler.
To make this start a bit easier for the boiler, the boiler operator should reduce the burner load to a boiling point.