Emissions standards for boilers have become very stringent in many areas because of the new Clean Air regulations. The ability of the boiler to meet emissions regulations depends on the type of boiler and burner options. ZOZEN has options to meet 5ppm NOx regulations, as well as 1 ppm CO regulation at 30 ppm NOx out of the box. We can also custom-engineer Selective Catalytic Reduction (SCR) for more rigorous emissions controls.
Stack temperature is the temperature of the combustion gases (dry and water vapor) leaving the boiler. A well-designed boiler removes as much heat as possible from the combustion gases. Thus, lower stack temperature represents more effective heat transfer and lower heat loss up the stack. The stack temperature reflects the energy that did not transfer from the fuel to steam or hot water. Stack temperature is a visible indicator of boiler efficiency. Any time efficiency is guaranteed, predicted stack temperatures should be verified.
Stack loss is a measure of the amount of heat carried away by dry flue gases (unused heat) and the moisture loss (product of combustion), based on the fuel analysis of the specific fuel being used, moisture in the combustion air, etc.
Condensing boilers can achieve up to 98% thermal efficiency, compared to 70%-80% with conventional designs (based on the higher heating value of fuels). Typical models offer efficiencies over 90% when the return water temperature is at 110 ºF or less; the lower the return water temperature, the higher the efficiency gain.
The primary purpose of the boiler is to supply energy to the facility's operations – for comfort heating, manufacturing process, laundry, kitchen, etc. The nature of the facility's operation will dictate whether a steam or hot water boiler should be used. Hot water is commonly used in heating applications, with the boiler supplying water to the system at 120°F to 220°F. The operating pressure for hot water heating systems usually is 30 psig to 125 psig (hydrostatic). Under these conditions, there is a wide range of hot water boiler products available. If system requirements are for hot water of more than 250°F, a high-temperature water boiler should be considered.
This is because, under normal circumstances, the exhaust temperature of the boiler cannot completely condense the water in the flue gas, and the difference between the low calorific value and the high calorific value is mainly in the part of the latent heat of vaporization, so the low heat is used. The value is calculated to reflect the true efficiency of the boiler. However, there will be some special circumstances. For example, if the boiler is a condensing boiler, the calculation of the condensed water portion should be calculated using the high calorific value.
Circulating fluidized bed boiler is a specific type of boilers, and compared with the other boilers, it has certain advantages, which are: it has great improvement in combustion technology, which can improve the boiler combustion quality and combustion effect, and in turn, to improve the boiler effect. This is achieved because two return feeders are used in this type of boiler to allow the fuel to form a circulation loop between the furnace and the return feeder.
In order to improve the combustion efficiency of the boiler, in a large boiler, the combustion air is not supplied all at once, but is supplied in two times, one is supplied with the fuel that controls the rate of combustion as well as the amount of fuel that can be burned,and the other is directly supplied to the combustion process that that improves combustion efficiency. The primary air rate of the boiler refers to the proportion of the primary air. If the total air volume is 100% and the primary air rate is 70%, the secondary air rate is 30%.
1. Your existing system is inefficient
Efficiency is key when it comes to plant heating. Utilizing efficient equipment can save your company a significant amount of money in the long run and it is better for the environment. If you know that your existing system is not as efficient as it could be and it is in need of repair, it may be worth looking into thermal oil system replacement.
2. Your existing system features helical coil technology
Helical coils are common in thermal oil heaters from most manufacturers. But there are many reasons why serpentine coils are the better way to go when it comes to thermal fluid heating. Repairs to helical coils can be so expensive and time consuming that in many cases you are better off investing in new equipment – and it is well worth it to consider a new thermal oil system that features serpentine coil technology instead.