The safety valve of the boiler refers to the valve on the top of the boiler near the boiler control room. The function of the safety valve is to be opened automatically to exhaust the steam and restore the pressure when the boiler pressure exceeds the specified valve, so as to ensure the safety of boiler pressure-bearing components and steam turbines.
From the perspective of atomization mode, there are three kinds of burner used by boiler that are rotating cup atomization burner, pressure atomization burner and medium atomization burner.
Here load means, amount of steam drawn from the boiler. So when the load increases, the specific volume of the steam in the boiler increases reducing the pressure. This inturn demands for more feed water and more amount of fuel to be burnt. So, for any boiler there will be a feed water level control system put in place to measure the water level in drum. As and when the level of water in the drum reduces, the controller sends a signal to the feed water pump to start and stops when the desired water level is reached. This way the steam generation continues to maintain the desired pressure.
Regular inspections can identify and correct faults in the safety systems that are designed to prevent accidents.
When it comes to regular maintenance, the cost of the inspections and repairs will be dramatically lower than the loss of time and profit from a broken boiler that requires replacing. Don’t let maintenance fall by the wayside. Schedule it at even intervals throughout the year.
Normally a boiler is provided with two independent sensors for emergency low water level burner cut-outs. So this would never happen. However, if it does, don't take any chances! Shut off the burners immediately!
Before you start raising the level in the boiler you have to find out if any part of the furnace walls has been overheated. If you raise the level over a glowing steel-wall then the boiler might produce more steam than the safety valves can handle and a nasty explosion would be the result.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
The term “boiler efficiency” is often substituted for thermal efficiency or fuel-to-steam efficiency. When the term “boiler efficiency” is used, it is important to know which type of efficiency is being represented. Why? Because thermal efficiency, which does not account for radiation and convection losses, is not an indication of the true boiler efficiency. Fuelto-steam efficiency, which does account for radiation and convection losses, is a true indication of overall boiler efficiency. The term “boiler efficiency” should be defined by the boiler manufacturer before it is used in any economic evaluation.