Few parameters critical to health of the Boiler are
(4)Heat rate of the Boiler. This is a composite index of many performance indicators. Most of them will appear below.
(5)Unburnt fuel in flue gas and at boiler bottom .
(6)Flue gas furnace exit temperature.
(7)Boiler tube metal temperatures.
(8)Oxygen in flue gas.
(9)Imbalances in flue gas temperature over a cross section.
(10)Spray water consumption in Super heater and Reheater.
(11)Heat radiation from insulation.
The above all affects the performance of the boiler.
The coal-fired steam boiler is a forced circulation high-pressure single-tube DC boiler. Its operation process includes three processes: the combustion process of the fuel, the heat transfer process of flue gas to water and the vaporization process after water absorbs heat. In order to better control these different processes, the control system should make
the heat of pulverized coal combustion adapt to the requirements of steam load changes and dryness.
In the work of transforming a coal-fired boiler into a gas-fired boiler, the principle of changing the original boiler should be reduced without changing the pressure component of the boiler body. The transformation process should focus on the choice of gas burners, the determination of the number of burners, the layout of the burners, the matching design of the furnace layout, and the selection of explosion-proof measures. Step by step, both economic benefits and practicality should be considered.
Volatile matter in coal refers to the components of coal, except for moisture, which are liberated at high temperature in the absence of air. This is usually a mixture of short- and long-chain hydrocarbons, aromatic hydrocarbons and some sulfur. Volatile matter also evaluate the adsorption application of an activated carbon. The volatile matter of coal is determined under rigidly controlled standards. In Australian and British laboratories this involves heating the coal sample to 900 ± 5 °C (1650 ±10 °F) for 7 min. Also as the rank of coal increases the volatile matter decreases (AMK).
Compared with the price of a traditional coal-fired boiler, the operation cost of a gas-fired boiler is relatively high. So, users need to consider the price and quality before purchasing a boiler. For a gas-fired boiler, the energy-saving performance is more important than the boiler price. One year is enough for a gas-fired boiler with good energy-saving performance to save the extra costs of the boiler proper. And, the gas consumption is an important indicator to measure the energy-saving performance of a boiler.
The function of the burner is to send the fuel and air into the furnace constantly, organize the air flow of pulverized coal reasonably and mix them well for rapid and stable ignition and combustion.
Firstly, the combustion of biomass fuel is easy to control. The fuel is easy to ignite. Besides, the combustion speed is faster than that of coal.
Secondly, the biomass-fired boiler can be ignited and extinguished at any time while the coal-fired boiler cannot. The biomass-fired boiler can also be ignited automatically.
Thirdly, the biomass-fired boiler can achieve zero emission of sulfur dioxide, which belongs to environment-friendly boilers.
1. The fuel volume is 1 / 30 ~ 40 of the raw material volume after molding;
2. The specific gravity is 10-15 times of the raw material, and the moisture content is between 12% and 18% (the moisture content of coal is below 10-15);
3. The net calorific value can reach 3500-4500 kcal (the net calorific value of class II bituminous coal is 3700-4700 kcal / kg);
4. The ash content is less than 10% (the ash content of coal is more than 20%);
5. Volatile matter ≥ 65.62% (volatile matter of class II bituminous coal≥20%).
6. Biomass fuel belongs to renewable clean energy, which is the same as wind energy and solar energy. The biomass fuel is rich in resources, it can ensure the sustainable use of energy.
7. The sulfur content and nitrogen content of biomass fuel are low, the amount of SOx and NOx generated in the combustion process is low.