The choice between a steam system or a thermal fluid system is governed by the process requirements. The range or process temperature is a deciding factor. If the system’s required temperature is above the freezing point of water (0°C) and below approximately 160°C, the choice is usually steam. However, if the required temperature is above 160°C, thermal fluid may be a better solution. Thermal oil heater systems can be designed with maximum operating temperatures to 325°C.
The boiler gas consumption calculation need the following parameters: gas calorific value and boiler thermal efficiency.
Theoretically, the gas consumption of boiler = boiler thermal capacity ÷ (calorific value of gas x boiler thermal efficiency )
Take the 1 tph steam boiler as an example:
= 600,000 cal / (8500Kcal * 0.98) =72m3/h, the 1 tph boiler's gas consumption per hour is about 72 cubic meters.
A fire tube steam boiler is a boiler where the combustion gases from the burner are channeled through tubes that are surrounded by the fluid to be heated. The boiler body is the pressure vessel and contains the fluid. In most cases, this fluid is water that will circulate for heating purposes or become steam for use in processing.
Each set of tubes through which the combustion gas passes, before making a turn, is considered a "step". Consequently, a three-step boiler will have three sets of pipes with the outlet located at the rear of the boiler.
In a water tube steam boiler, unlike a fire tube, water circulates inside the tubes. The heat that is generated and the combustion gases that surround the tubes heat the water that circulates inside them. Many water-tube boilers operate according to the principle of natural water circulation.
The capacity of this type of boiler can be enhanced by increasing the number of tubes in the boiler.
Industrial boilers are machines or engineering devices whose primary objective is the generation of steam. The heat that is generated, which can come from any energy source, causes it to be transformed into energy for use, either through a liquid phase medium or steam.
Steam boilers with a low NOx system are specially designed to minimize the environmental impact with the production of dry saturated steam. This type of boiler incorporates a stainless steel economizer with a cross flow integrated within the boiler and that, consequently, allows to reach maximum efficiency.In addition, it has a natural gas burner with low NOx emissions.
In superheated industrial water boilers, the water is pressurized and boiled to 100°C producing steam. These boilers are pyrotubular, with a high volume of water and a large temperature exchange zone. The designs can adapt to temperatures and pressures according to needs.
The pressure of the steam is directly related to its temperature. So process temperature will require steam used to be at a specified pressure. For example, a process requires that needs temperatures at 150°C will require steam delivered at 6 Kg/cm2 or higher.