The service life of your industrial boiler is 15 years. Of course, there are a number of factors that may force you to replace your boiler before it reaches the 15-year mark. If there are obvious signs of wear and tear, you may not want to push the boiler much longer.
One of the most important accessories you can have for your steam boiler is a water softener, which serves several purposes and plays a crucial role in helping your boiler avoid malfunctions and run more efficiently. Let's go back to the basics and walk through how water softeners are used in steam boilers.
The choice between a steam system or a thermal fluid system is governed by the process requirements. The range or process temperature is a deciding factor. If the system’s required temperature is above the freezing point of water (0°C) and below approximately 160°C, the choice is usually steam. However, if the required temperature is above 160°C, thermal fluid may be a better solution. Thermal oil heater systems can be designed with maximum operating temperatures to 325°C.
The boiler gas consumption calculation need the following parameters: gas calorific value and boiler thermal efficiency.
Theoretically, the gas consumption of boiler = boiler thermal capacity ÷ (calorific value of gas x boiler thermal efficiency )
Take the 1 tph steam boiler as an example:
= 600,000 cal / (8500Kcal * 0.98) =72m3/h, the 1 tph boiler's gas consumption per hour is about 72 cubic meters.
The main sectors in which industrial steam boilers are used are:
Food, in industrial bakeries or baby food (as an example)
Textile, in rotary dryers
Chemical, for reactors or storage
Pharmaceutical, for the manufacture of medicines
Cosmetics, for the production of perfumes and creams
Stationery and printing, in drying tunnels
The cement industry, for the manufacture of cement parts
Oil, for the storage and distribution of heavy oils
Wood, involved in the process of melanin production
Hospitals and hotels, especially in the laundry and kitchen areas
Automotive and surface treatment, for the final metal finishing.
A fire tube steam boiler is a boiler where the combustion gases from the burner are channeled through tubes that are surrounded by the fluid to be heated. The boiler body is the pressure vessel and contains the fluid. In most cases, this fluid is water that will circulate for heating purposes or become steam for use in processing.
Each set of tubes through which the combustion gas passes, before making a turn, is considered a "step". Consequently, a three-step boiler will have three sets of pipes with the outlet located at the rear of the boiler.
In a water tube steam boiler, unlike a fire tube, water circulates inside the tubes. The heat that is generated and the combustion gases that surround the tubes heat the water that circulates inside them. Many water-tube boilers operate according to the principle of natural water circulation.
The capacity of this type of boiler can be enhanced by increasing the number of tubes in the boiler.
The primary objective of an industrial boiler is the generation of steam. Steam is generated by heat transfer at a constant pressure. The fluid, which is initially in a liquid state, is heated, produces a variation in its phase and becomes saturated vapour.
This saturated steam can then be used for different applications such as sterilization, fluid heating or electricity generation.