If the final temperature of feed water doesn’t reach the saturated temperature after being heated by an economizer, (that is, the feed water has not reached the boiling state), we call the economizer as a nonsteaming economizer. Generally, the final temperature is 30-50℃ lower than the saturated temperature.
The term “boiler efficiency” is often substituted for thermal efficiency or fuel-to-steam efficiency. When the term “boiler efficiency” is used, it is important to know which type of efficiency is being represented. Why? Because thermal efficiency, which does not account for radiation and convection losses, is not an indication of the true boiler efficiency. Fuelto-steam efficiency, which does account for radiation and convection losses, is a true indication of overall boiler efficiency. The term “boiler efficiency” should be defined by the boiler manufacturer before it is used in any economic evaluation.
A process load is usually a high-pressure steam load. A process load pertains to manufacturing operations, where heat from steam or hot water is used in the process. A process load is further defined as either continuous or batch. In a continuous load, the demand is fairly constant - such as in a heating load. The batch load is characterized by short-term demands. The batch load is a key issue when selecting equipment, because a batch-type process load can have a very large instantaneous demand that can be several times larger than the rating of the boiler. For example, based on its size, a heating coil can consume a large amount of steam simply to fill and pressurize the coil. When designing a boiler room for a process load with instantaneous demand, a more careful boiler selection process should take place.
There are so many options to weigh when looking for high efficiency boilers: hot water or steam, wetback or dryback, type of fuel, and more. However, there are a few key considerations to make when evaluating a new boiler for efficiency that will help you no matter what your other considerations may be. Look for a fan that can deliver a stable air supply, a burner and boiler unit that can produce low emissions, a design that maximizes flue gas velocity, smart pressure vessel design, and an efficient heating power to boiler surface ratio are just a few considerations to keep in mind. These simple but powerful design elements are hallmarks of solid construction and will add up to significant performance enhancements. Our team members are always available for consultation and can make specific recommendations when it comes to models once we know more about your needs.
(Question Details) Specific Performance:(1) There are blasting sounds in the furnace, and the furnace chamber is under positive pressure. There is smoke emitted from the combustion chamber in a leakage. In severe cases, the explosion-proof door of the boiler body opens.(2) Drum water level drops rapidly and the feedwater flow rate is not abnormally larger than steam flow. MFT acts when the water level is below -280mm.(3) Drum pressure, steam flow rate, exhaust temperature decrease, smoke temperature difference increases on both sides.(4) The negative pressure at the inlet of the flue and suction fan becomes smaller and the temperature difference between the two sides increased. (5) Smoke temperature decreases at the inlet and outlet of the cyclone separator, and the temperature of the material returned is low.(6) Bed pressure increases, bed materials clean, fluidization poof, bed temperature distributes unevenly and bottom slag discharge difficultly. Answer:cause of failure:(1) Fly ash