There are so many options to weigh when looking for high efficiency boilers: hot water or steam, wetback or dryback, type of fuel, and more. However, there are a few key considerations to make when evaluating a new boiler for efficiency that will help you no matter what your other considerations may be. Look for a fan that can deliver a stable air supply, a burner and boiler unit that can produce low emissions, a design that maximizes flue gas velocity, smart pressure vessel design, and an efficient heating power to boiler surface ratio are just a few considerations to keep in mind. These simple but powerful design elements are hallmarks of solid construction and will add up to significant performance enhancements. Our team members are always available for consultation and can make specific recommendations when it comes to models once we know more about your needs.
One of the most difficult questions of purchasing new boilers is deciding how many boilers will be necessary. The best way is to consult with an expert who can guide you through the process. However, there are two factors to consider before you speak to an expert.
The boiler gas consumption calculation need the following parameters: gas calorific value and boiler thermal efficiency.
Theoretically, the gas consumption of boiler = boiler thermal capacity ÷ (calorific value of gas x boiler thermal efficiency )
Take the 1 tph steam boiler as an example:
= 600,000 cal / (8500Kcal * 0.98) =72m3/h, the 1 tph boiler's gas consumption per hour is about 72 cubic meters.
A fire tube steam boiler is a boiler where the combustion gases from the burner are channeled through tubes that are surrounded by the fluid to be heated. The boiler body is the pressure vessel and contains the fluid. In most cases, this fluid is water that will circulate for heating purposes or become steam for use in processing.
Each set of tubes through which the combustion gas passes, before making a turn, is considered a "step". Consequently, a three-step boiler will have three sets of pipes with the outlet located at the rear of the boiler.
In a water tube steam boiler, unlike a fire tube, water circulates inside the tubes. The heat that is generated and the combustion gases that surround the tubes heat the water that circulates inside them. Many water-tube boilers operate according to the principle of natural water circulation.
The capacity of this type of boiler can be enhanced by increasing the number of tubes in the boiler.
Industrial boilers are machines or engineering devices whose primary objective is the generation of steam. The heat that is generated, which can come from any energy source, causes it to be transformed into energy for use, either through a liquid phase medium or steam.
In superheated industrial water boilers, the water is pressurized and boiled to 100°C producing steam. These boilers are pyrotubular, with a high volume of water and a large temperature exchange zone. The designs can adapt to temperatures and pressures according to needs.
Any boiler where the products of combustion flow on the inside of a tube with the heat transfer media (ex. water, steam, or hot oil) on the outside. The tubes can be orientated vertically, horizontally or at an angle.