Stack temperature is the temperature of the combustion gases (dry and water vapor) leaving the boiler. A well-designed boiler removes as much heat as possible from the combustion gases. Thus, lower stack temperature represents more effective heat transfer and lower heat loss up the stack. The stack temperature reflects the energy that did not transfer from the fuel to steam or hot water. Stack temperature is a visible indicator of boiler efficiency. Any time efficiency is guaranteed, predicted stack temperatures should be verified.
Stack loss is a measure of the amount of heat carried away by dry flue gases (unused heat) and the moisture loss (product of combustion), based on the fuel analysis of the specific fuel being used, moisture in the combustion air, etc.
Condensing boilers can achieve up to 98% thermal efficiency, compared to 70%-80% with conventional designs (based on the higher heating value of fuels). Typical models offer efficiencies over 90% when the return water temperature is at 110 ºF or less; the lower the return water temperature, the higher the efficiency gain.
Retrofitting a piece of equipment or an existing industrial heating system can be very challenging, but it can be especially frustrating if you haven't planned well ahead of time. You'll want to be sure that you've done your homework to ensure that retrofitting the piece of equipment you have in the way you have in mind is actually possible.
If it is possible, you'll want to work with the appropriate engineers to figure out exactly what it will entail, how much it will cost, what impact it will have on operations, etc.
Economizer is one of steam boiler’s equipment which is used to heat feedwater before it is supplied into steam drum. Economizer is the heat exchanger equipment to increase boiler efficiency by absorbing heat recovery of flue gases. The lower temperature of flue gas out from stack, the heat loss will be less and the fuel which is needed to convert water into steam will be also less in certain circumstances. So it can be said that economizer can save the fuel efficiently. Economizer will make temperature of feedwater higher, so steam boiler can produce steam easily.
Efficiency is especially important on a large scale and manufacturing and production operations are no exception. Here are two key reasons why you may want to consider upgrading your industrial heating equipment or installing a new, highly efficient thermal fluid heating system in your plant or facility.
In a boiler, energy from the fuel is transferred to liquid water in order to create steam. Once the water is heated to boiling point, it is vaporized and turned into saturated steam. When saturated steam is heated above boiling point, dry steam is created and all traces of moisture are erased. This is called superheated steam.
The service life of your industrial boiler is 15 years. Of course, there are a number of factors that may force you to replace your boiler before it reaches the 15-year mark. If there are obvious signs of wear and tear, you may not want to push the boiler much longer.
Boilers with low water volumes require a minimum flow requirement to prevent localized boiling and subsequent heat exchanger damage in a low to zero water flow situation. Minimum flow requirement varies by boiler design. Regardless if a boiler itself has a minimum flow requirement, every hydronic heating system needs to be designed to carry the energy being created away from the boiler to avoid high temperature shut down.