Here load means, amount of steam drawn from the boiler. So when the load increases, the specific volume of the steam in the boiler increases reducing the pressure. This inturn demands for more feed water and more amount of fuel to be burnt. So, for any boiler there will be a feed water level control system put in place to measure the water level in drum. As and when the level of water in the drum reduces, the controller sends a signal to the feed water pump to start and stops when the desired water level is reached. This way the steam generation continues to maintain the desired pressure.
Normally a boiler is provided with two independent sensors for emergency low water level burner cut-outs. So this would never happen. However, if it does, don't take any chances! Shut off the burners immediately!
Before you start raising the level in the boiler you have to find out if any part of the furnace walls has been overheated. If you raise the level over a glowing steel-wall then the boiler might produce more steam than the safety valves can handle and a nasty explosion would be the result.
Coal-fired boilers refer to boilers that use various kinds of coals as fuel and convert the heat value of coals to steam or hot water.
Some specific parameters should be provided to calculate the theoretical coal consumption of a set of 20 tph coal-fired boiler. If the rated steam pressure is 1 MPa, the heat value of coal is 7000 kcal / kg, the boiler inlet water temperature is 20 ° C, and the boiler thermal efficiency is 80%, the daily coal consumption is 50-56 tons.
Loads vary, and a power plant must be capable of handling the minimum load, the maximum load, and any load variations. Boiler selection is often dictated by the variation in load demand, rather than by the total quantity of steam or hot water required. There are three basic types of load variations: seasonal, daily, and instantaneous.
The primary objective of an industrial boiler is the generation of steam. Steam is generated by heat transfer at a constant pressure. The fluid, which is initially in a liquid state, is heated, produces a variation in its phase and becomes saturated vapour.
This saturated steam can then be used for different applications such as sterilization, fluid heating or electricity generation.
Water, which is the primary fluid inside the closed metal container of the industrial boiler, is heated to an atmospheric temperature and a pressure higher than the external one. Once the steam is generated, it advances through the pipes.
The air in the economizer and condenser has not drained yet when firing. The safety valves of economizer and condenser need to be turned on to exhaust steam. Return pipe valves also need to be turned on, enabling the steam in the economizer and condenser to return to softened water tank.
The outlet water temperature is so high that economizer and condenser will have vaporization phenomenon. The outlet water temperature of economizer and condenser need to be controlled.
The check valve of the...
(Details on the problem) Specific Performance:Slagging pipe blocks during operation of circulating fluidized bed boiler. Answer:cause of failure:(1) The internal shape is caused by the limited expansion of the wear-resistant material inside the slag discharge pipe. The internal components of the slag cooler are deformed, affecting the fluidization of the slag cooler; the slag cooler is deactivated for a long time or a single slag cooler is selected for slagging, and the bed material in the deactivated slag cooler is bonded under the influence of steam, which being low temperature coke.(2) The operating personnel did not grasp the ratio of the fluidized air volume of the slag cooler. Inappropriate air volume ratio resulted in poor ash slag fluidization in the slag cooler. Troubleshooting:(1) Operation personnel should strengthen understanding of boiler operating conditions, adjust boiler parameters in a timely manner, set up the concept of boiler material dynamic balance, control boiler