A water level sensor fail on a steam boiler is extremely dangerous. The low water cut of should be tested daily. If the sensor fails the boiler could turn all the water into steam, leaving the boiler dry. Without water in the boiler the flame from the burner would heat up the heating surface to extreme temperatures and would crack and damage the inside of the boiler. But that’s not the dangerous part. If water added to boiler while it is extremely hot. Once water touches the extremely hot heating service, water would immediately start to evaporate into steam. When water evaporates it expands 18x it’s original size. The boiler would explode from the sudden increase in pressure from the inside. Some in some cases, boilers that have exploded out of a building and have landed 100s of feet away.
Not inspecting it often enough can lead to minor issues being missed, which can lead to major issues later and possibly injury.
Not checking a boiler system could have catastrophic results in the form of a boiler explosion. Fuel may explode due to unfound problems. The high temperatures generated by the boiler can also cause problems if the water level drops too low and the trip switch fails.
Regular inspections can identify and correct faults in the safety systems that are designed to prevent accidents.
When it comes to regular maintenance, the cost of the inspections and repairs will be dramatically lower than the loss of time and profit from a broken boiler that requires replacing. Don’t let maintenance fall by the wayside. Schedule it at even intervals throughout the year.
Normally a boiler is provided with two independent sensors for emergency low water level burner cut-outs. So this would never happen. However, if it does, don't take any chances! Shut off the burners immediately!
Before you start raising the level in the boiler you have to find out if any part of the furnace walls has been overheated. If you raise the level over a glowing steel-wall then the boiler might produce more steam than the safety valves can handle and a nasty explosion would be the result.
There are many opinions on the best way to clean a steam boiler. One of the oldest ways is to dissolve a pound of tri-sodium phosphate (TSP) and a pound of caustic soda (lye) in water and pour it into the boiler. Let it cook for a few hours and then drain the boiler. If you can't buy TSP in your town, try a commercial soap called MEX. It works well and will not damage the rubber gaskets found in some boilers. However, before you clean any boiler, check the manufacturer's instructions for their recommendations.
The causes of coal erosion as distinct from all the other types of erosion are many but from a theoretical point of view are simply high velocity particles impacting and rubbing along the surface of the tubes.
The boiler designer minimises this by providing a volume in the furnace and a direction of travel of the coal such that it is burned before it can touch the tubes. This can be defeated by increasing the velocity reducing the combustibility or increasing the mass flow. All of these parameters occur if you reduce the calorific value of the fuel or overload the boiler. If you had no erosion before changing your fuel that is the cause. If you have never had design fuel you dont know if it would have eroded anyway. If it would the cause will be a different reason such as arodynamic flows and aiming of the burner or size of the tartget fireball centre. This is a serious problem and should be dealt with by an experienced expert.
1.Primary air is used for transportation of fine coal particle from coal mill to boiler floor at different elevations as per requirement.
2.Primary air is used for preheating of moisturised coal in to the coal mill so that minimum energy is required for combustion of the same.
3.As we all know that only 23% oxygen is available in the air by weight. For combustion of huge quantity of coal inside the boiler very high quantity of oxygen is required. This oxygen requirement will be completed by secondary air which is supplied by FORCED DRAFT fans through ducts.
This secondary air is coming via air preheater hence its outlet temperature increases this will help in combustion and low heat input is required for combustion of coal.
Boiler efficiency is mainly depended on the amount of losses in the system. In high capacity pulverized coal fired boilers the total losses account to about 12 to 14%. Roughly 50% of the losses are governed by fuel properties like hydrogen in fuel, moisture in fuel and ambient air conditions. The other 50% losses are carbon loss and dry gas loss. The best efficiency in the boiler can be achieved if the losses are kept to the minimum. Since 50% of the losses are dependent on the fuel and ambient condition, the best efficiency can be achieved by properly tuning the other 50%, i.e. mainly carbon loss and dry gas loss.