In the adjustment of boiler operation, on the basis of ensuring safe operation, economic operation must also be achieved to improve boiler efficiency. In general boiler units, the efficiency can basically reach more than 92%, and the total loss is less than 8%. The loss is: exhaust heat loss, generally 5-6%, followed by mechanical incomplete combustion heat loss is less than 1-1.5 %, heat loss and ash slag physical heat loss are about 1%. (Physical heat loss for high ash coal ash residue will be greater).
From the point of view of quantification of indicators, the key to improving boiler efficiency is to reduce smoke loss and heat loss due to incomplete combustion of machinery. Pay attention to the flue gas temperature changes. Excessive flue gas temperature will affect the efficiency of the boiler. Too low temperature may cause low-temperature corrosion of the air preheater. Therefore, it is necessary to strengthen the adjustment according to the load changes during operation. When t
Here load means, amount of steam drawn from the boiler. So when the load increases, the specific volume of the steam in the boiler increases reducing the pressure. This inturn demands for more feed water and more amount of fuel to be burnt. So, for any boiler there will be a feed water level control system put in place to measure the water level in drum. As and when the level of water in the drum reduces, the controller sends a signal to the feed water pump to start and stops when the desired water level is reached. This way the steam generation continues to maintain the desired pressure.
A water level sensor fail on a steam boiler is extremely dangerous. The low water cut of should be tested daily. If the sensor fails the boiler could turn all the water into steam, leaving the boiler dry. Without water in the boiler the flame from the burner would heat up the heating surface to extreme temperatures and would crack and damage the inside of the boiler. But that’s not the dangerous part. If water added to boiler while it is extremely hot. Once water touches the extremely hot heating service, water would immediately start to evaporate into steam. When water evaporates it expands 18x it’s original size. The boiler would explode from the sudden increase in pressure from the inside. Some in some cases, boilers that have exploded out of a building and have landed 100s of feet away.
Not inspecting it often enough can lead to minor issues being missed, which can lead to major issues later and possibly injury.
Not checking a boiler system could have catastrophic results in the form of a boiler explosion. Fuel may explode due to unfound problems. The high temperatures generated by the boiler can also cause problems if the water level drops too low and the trip switch fails.
Regular inspections can identify and correct faults in the safety systems that are designed to prevent accidents.
When it comes to regular maintenance, the cost of the inspections and repairs will be dramatically lower than the loss of time and profit from a broken boiler that requires replacing. Don’t let maintenance fall by the wayside. Schedule it at even intervals throughout the year.
Normally a boiler is provided with two independent sensors for emergency low water level burner cut-outs. So this would never happen. However, if it does, don't take any chances! Shut off the burners immediately!
Before you start raising the level in the boiler you have to find out if any part of the furnace walls has been overheated. If you raise the level over a glowing steel-wall then the boiler might produce more steam than the safety valves can handle and a nasty explosion would be the result.
There are many opinions on the best way to clean a steam boiler. One of the oldest ways is to dissolve a pound of tri-sodium phosphate (TSP) and a pound of caustic soda (lye) in water and pour it into the boiler. Let it cook for a few hours and then drain the boiler. If you can't buy TSP in your town, try a commercial soap called MEX. It works well and will not damage the rubber gaskets found in some boilers. However, before you clean any boiler, check the manufacturer's instructions for their recommendations.
The causes of coal erosion as distinct from all the other types of erosion are many but from a theoretical point of view are simply high velocity particles impacting and rubbing along the surface of the tubes.
The boiler designer minimises this by providing a volume in the furnace and a direction of travel of the coal such that it is burned before it can touch the tubes. This can be defeated by increasing the velocity reducing the combustibility or increasing the mass flow. All of these parameters occur if you reduce the calorific value of the fuel or overload the boiler. If you had no erosion before changing your fuel that is the cause. If you have never had design fuel you dont know if it would have eroded anyway. If it would the cause will be a different reason such as arodynamic flows and aiming of the burner or size of the tartget fireball centre. This is a serious problem and should be dealt with by an experienced expert.