For same energy output when energy input is lesser efficiency increase. When maximum heat energy is generated from coal or losses in heat transfer are reduced efficiency increase. Coal in boulder size is burnt combustion may not be complete. There will be more unburnt coal. As per coal chemistry and as per boiler flue gas velocity as designed best coal size for full combustion is designed. Maximum crushed coal is also not the best. Then there will be more coal dust. According to general design in various technologies pulverized coal give best combustion for fbc boilers. For cfbc boilers generally crushed coal size is 6 mm.
When you achieve best combustion mean this is main contributor for increase in efficiency. Boiler design, heat transfer, flue gas velocity, heat losses, are other factors for efficiency.
1.Primary air is used for transportation of fine coal particle from coal mill to boiler floor at different elevations as per requirement.
2.Primary air is used for preheating of moisturised coal in to the coal mill so that minimum energy is required for combustion of the same.
3.As we all know that only 23% oxygen is available in the air by weight. For combustion of huge quantity of coal inside the boiler very high quantity of oxygen is required. This oxygen requirement will be completed by secondary air which is supplied by FORCED DRAFT fans through ducts.
This secondary air is coming via air preheater hence its outlet temperature increases this will help in combustion and low heat input is required for combustion of coal.
Few parameters critical to health of the Boiler are
(4)Heat rate of the Boiler. This is a composite index of many performance indicators. Most of them will appear below.
(5)Unburnt fuel in flue gas and at boiler bottom .
(6)Flue gas furnace exit temperature.
(7)Boiler tube metal temperatures.
(8)Oxygen in flue gas.
(9)Imbalances in flue gas temperature over a cross section.
(10)Spray water consumption in Super heater and Reheater.
(11)Heat radiation from insulation.
The above all affects the performance of the boiler.
Boiler efficiency is mainly depended on the amount of losses in the system. In high capacity pulverized coal fired boilers the total losses account to about 12 to 14%. Roughly 50% of the losses are governed by fuel properties like hydrogen in fuel, moisture in fuel and ambient air conditions. The other 50% losses are carbon loss and dry gas loss. The best efficiency in the boiler can be achieved if the losses are kept to the minimum. Since 50% of the losses are dependent on the fuel and ambient condition, the best efficiency can be achieved by properly tuning the other 50%, i.e. mainly carbon loss and dry gas loss.
If you smell gas, don’t use electrical switches, telephones, or any appliances that may cause sparks.Firstly, you should shut off the gas valve, open the doors and windows to circulate the air. Then you should seek for professional help:
The following conditions will occur when a gas-fired boiler is leaking:
The working pressure of natural gas changes.
There is a strong airflow sound near the source of the leak.
The hand-held alarm makes an abnormal sound.
If the boiler has a serious leakage, the fixed alarm will issue an automatic alarm and the exhaust fan will be opened automatically.
First of all, we should consider the thermal insulation effect. The main function of a gas-fired boiler is to provide heat energy. Good surface packaging material can avoid heat loss and save the fuel. It is suggested to choose glass wool which has a good insulation effect.
Secondly, we should consider the boiler appearance. It is best to choose a white color plate package when buying a gas-fired boiler, which not only has a beautiful appearance but also has a good insulation effect.
Finally, we should consider the boiler size. Wrong boiler size will cause some unnecessary troubles.
If the following three conditions occur during the burning and flame out process of a gas-fired boiler, the furnace is likely to blow up.
1.The residual gas content in the furnace reaches the ignition limit at the start-up phase of the furnace.
2.The fuel content in the furnace reaches the ignition limit after several times failure of ignition.
3.The fuel is sprayed out because of the halfway extinction of the flame. And, the temperature of the furnace can not meet the spontaneous combustion condition of the sprayed fuel. However, the content of the sprayed fuel reaches the ignition limit.