Safety is always a top priority when working with industrial boilers, at least it should be. Fortunately, safety has become less of an issue with more modern water tube boilers. Compared to traditional fire tube boilers, water tube boilers are far safer, almost to the point where you don’t have to worry about a catastrophic explosion taking place.
Boilers with low water volumes require a minimum flow requirement to prevent localized boiling and subsequent heat exchanger damage in a low to zero water flow situation. Minimum flow requirement varies by boiler design. Regardless if a boiler itself has a minimum flow requirement, every hydronic heating system needs to be designed to carry the energy being created away from the boiler to avoid high temperature shut down.
The choice between a steam system or a thermal fluid system is governed by the process requirements. The range or process temperature is a deciding factor. If the system’s required temperature is above the freezing point of water (0°C) and below approximately 160°C, the choice is usually steam. However, if the required temperature is above 160°C, thermal fluid may be a better solution. Thermal oil heater systems can be designed with maximum operating temperatures to 325°C.
The boiler gas consumption calculation need the following parameters: gas calorific value and boiler thermal efficiency.
Theoretically, the gas consumption of boiler = boiler thermal capacity ÷ (calorific value of gas x boiler thermal efficiency )
Take the 1 tph steam boiler as an example:
= 600,000 cal / (8500Kcal * 0.98) =72m3/h, the 1 tph boiler's gas consumption per hour is about 72 cubic meters.
Yes, it is recommended to turn your boiler off whilst the tank is being filled and to leave it off for a short period afterwards of up to 30 minutes. This will ensure that any sediment that has settled on the base of your tank is not stirred up and drawn into your fuel line.
The main sectors in which industrial steam boilers are used are:
Food, in industrial bakeries or baby food (as an example)
Textile, in rotary dryers
Chemical, for reactors or storage
Pharmaceutical, for the manufacture of medicines
Cosmetics, for the production of perfumes and creams
Stationery and printing, in drying tunnels
The cement industry, for the manufacture of cement parts
Oil, for the storage and distribution of heavy oils
Wood, involved in the process of melanin production
Hospitals and hotels, especially in the laundry and kitchen areas
Automotive and surface treatment, for the final metal finishing.
A fire tube steam boiler is a boiler where the combustion gases from the burner are channeled through tubes that are surrounded by the fluid to be heated. The boiler body is the pressure vessel and contains the fluid. In most cases, this fluid is water that will circulate for heating purposes or become steam for use in processing.
Each set of tubes through which the combustion gas passes, before making a turn, is considered a "step". Consequently, a three-step boiler will have three sets of pipes with the outlet located at the rear of the boiler.