Normally a boiler is provided with two independent sensors for emergency low water level burner cut-outs. So this would never happen. However, if it does, don't take any chances! Shut off the burners immediately!
Before you start raising the level in the boiler you have to find out if any part of the furnace walls has been overheated. If you raise the level over a glowing steel-wall then the boiler might produce more steam than the safety valves can handle and a nasty explosion would be the result.
Soot on the heating surfaces. Even a thin layer of soot will reduce the boiler efficiency. Not the right fuel for the burner. For instance, diesel oil to a rotary cup burner wouldn't do. Too low feed water temperature.
The dry bottom hopper is formed by bending the lower part of the water wall of the front and rear walls inward. The main function is to gather, cool and automatically discharge ash. It is also convenient for the connection and sealing of the lower header and the ash well.
The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
This is because, under normal circumstances, the exhaust temperature of the boiler cannot completely condense the water in the flue gas, and the difference between the low calorific value and the high calorific value is mainly in the part of the latent heat of vaporization, so the low heat is used. The value is calculated to reflect the true efficiency of the boiler. However, there will be some special circumstances. For example, if the boiler is a condensing boiler, the calculation of the condensed water portion should be calculated using the high calorific value.
Package boiler is a boiler that had been fabricated and available as a complete package. The entire pressure parts have been assembled in the workshop and ready to be sent to the field or site where power plant is located. On the field/site requires only connection and integration of course work in electrical connections, water pipes, steam pipes and fuel piping system to operate. Package boiler is one of classification of boiler based on erection. Design package boilers in general are the type of Fire Tube Boiler and have made up shell and tubes. This type has high heat transfer both radiation and convection.
All boilers, whether hot water or steam, depend on fuel to run. The heating process is initiated when the burner heats or evaporates the water inside it, which is ultimately transported via pipe systems. Hot water boilers rely on pumps to move the heat through the system, while steam boilers are transported with the pressure generated in the heating process. Eventually, cooled water or condensed steam is returned back through the pipes to the boiler system so that it can be heated once again. While the boiler is generating energy in the form of heat, flue gases, a byproduct of this process, are removed through a chimney system - which is why regulating the emissions of industrial boilers is taken very seriously.
There are a number of considerations to factor when determining the best boiler for your steam generation needs like operating pressure, steam pounds/hour output, demand fluctuation, general application requirments and total cost of ownership, etc.
Two primary boiler types, the firetube boiler and the watertube boiler, are essentially opposite in design. The firetube boiler passes combustion gas inside a series of tubes surrounded by water in a vessel to produce steam, while a watertube instead sends water through a series of tubes surrounded by combustion gas used to transfer heat energy and produce steam.