A condensing boiler can condense the water vapour in the flue gases and withstand the corrosive and acidic qualities of the flue gas condensate. Although most boilers can condense the flue gasses, only boilers that have heat exchangers constructed from materials able to withstand the corrosion should be used in condensing application. Condensing boilers with primary and secondary heat exchanger do not work well as they are not able to fully condense and defeat the purpose of using a condensing boiler. Also, boilers with this arrangement are prone to condensation in the primary heat exchanger at lower firing rate which can cause damage to the heat exchanger.
On a steam raising boiler there are three clear applications for level monitoring devices:
1) Level control - To ensure that the right amount of water is added to the boiler at the right time.
If the impurities in the boiler feedwater are not dealt with properly, carryover of boiler water into the steam system can occur.
Carryover can be caused by two factors:
To prevent scale formation from low remaining levels of hardness which may have escaped treatment. Sodium phosphate is normally used for this, and causes the hardness to precipitate to the bottom of the boiler where it can be blown down.
In addition to water, other fluids can transport heat in industrial boilers, and thermal fluids usually replace water when higher temperatures are needed.
A steam boiler is a water containing vessel which transfers heat generated by a fuel source into steam, which is then piped and directed to points where it could be used while running industrial equipment. The basic idea here is to convert water to steam using a source of heat.
As their name implies, hot water boilers operate by being completely filled with hot water. On the other hand, steam boilers are usually only filled approximately 3/4th of the way full, while the top quarter is reserved for steam.
Whether it's an industrial hot water boiler or an industrial steam boiler, they all depend on fuel to run. The process of heating is initiated as the burner heats or eventually evaporates the water inside of it. It's actually transported via intricate pipe systems.
Steam boilers transport through the pressure created by the process, while hot water boilers use pumps to move heat throughout the system. Eventually the condensed steam or cooled water returns back through the pipes to the boiler system, so the heating process can be initiated again.
As the boiler creates heat energy, a byproduct of the process — flue gases — are exited through a chimney system. Because of this, regulating the industrial boiler emissions is a very serious issue.