When using the thermal oil heater, users often add some auxiliary device to the boiler for more stable and safe operation. This is an introduction about the installation and using tips of thermal oil heater's auxiliary device.
Some kinds of boilers have the problem of energy waste caused by heat loss in the process of steam transmission due to their special structures. To solve this problem, we should properly improve the steam transmission process.
A water level sensor fail on a steam boiler is extremely dangerous. The low water cut of should be tested daily. If the sensor fails the boiler could turn all the water into steam, leaving the boiler dry. Without water in the boiler the flame from the burner would heat up the heating surface to extreme temperatures and would crack and damage the inside of the boiler. But that’s not the dangerous part. If water added to boiler while it is extremely hot. Once water touches the extremely hot heating service, water would immediately start to evaporate into steam. When water evaporates it expands 18x it’s original size. The boiler would explode from the sudden increase in pressure from the inside. Some in some cases, boilers that have exploded out of a building and have landed 100s of feet away.
Generally, there is moisture in heat medium oil. And, the moisture will be evaporated during the heating process of the oil. If the water vapor is not discharged from the thermal oil heater, it will cause the fluctuation of heat medium oil pressure. However, the oil-gas separator can separate the water vapor from the heat medium oil and discharge it from the heater, which ensures the stable oil pressure.
The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
Fuel-to-steam efficiency is a measure of the overall efficiency of the boiler. It accounts for the effectiveness of the heat exchanger as well as the radiation and convection losses. It is an indication of the true boiler efficiency and should be the efficiency used in economic evaluations. As prescribed by the ASME Power Test Code, PTC 4.1, the fuel-to-steam efficiency of a boiler can be determined by two methods: the InputOutput Method and the Heat Loss Method.
Emissions standards for boilers have become very stringent in many areas because of the new Clean Air regulations. The ability of the boiler to meet emissions regulations depends on the type of boiler and burner options. ZOZEN has options to meet 5ppm NOx regulations, as well as 1 ppm CO regulation at 30 ppm NOx out of the box. We can also custom-engineer Selective Catalytic Reduction (SCR) for more rigorous emissions controls.
The combustion air preheater is definitely one of heat exchanger applications. Based on Figure 1 below, flue gas simply leaves steam boiler and passes via air preheater. The combustion air is passed through this equipment too to increase its temperature before being combined with boiler fuel.
Because the temperature of combustion air is lower than the temperature of flue gas, combustion air receive heat transfer from flue gas through combustion air preheater in the process of convection heat transfer. The heat transfer make temperature of flue gas lower and consequently minimizes its heat loss and also decreases the air temperature to stack.