With the industrial innovation and the advance of science and technology, steam engine is replaced by gas-fired boiler that is a kind of more energy-saving heat production machine. There are three main usages of gas-fired boiler that we need to know in order to better understand the benefits that gas-fired boiler brings to us.
Here load means, amount of steam drawn from the boiler. So when the load increases, the specific volume of the steam in the boiler increases reducing the pressure. This inturn demands for more feed water and more amount of fuel to be burnt. So, for any boiler there will be a feed water level control system put in place to measure the water level in drum. As and when the level of water in the drum reduces, the controller sends a signal to the feed water pump to start and stops when the desired water level is reached. This way the steam generation continues to maintain the desired pressure.
The condensing boiler burns carbon-based fuel with oxygen in order to produce steam and carbon dioxide. The gases that escape this process (through a chimney) as exhaust are called flue gases. The major advantage is that they offer up to a 90% improvement in terms of efficiency when compared to standard gas boilers. Overall, condensing boilers are considered much more efficient in contrast to non-condensing gas boilers, a major consideration for any business running on a budget.
The economizer is a heat exchanger equipment which utilizes heat recovery of flue gases to heat feedwater. It can increase boiler efficiency, reduce the temperature of flue gas and save the fuel by absorbing recovery of flue gases. Besides, the feedwater is heated through the economizer before it is supplied into steam drum to decrease the thermal stress of the steam drum wall caused by temperature difference, which can improve the operating conditions of steam drum and prolong the service life of the steam drum.
System load is measured in either BTUs or tons of steam (at a specific pressure and temperature). It would be nearly impossible to size and select a boiler(s) without knowing the system load requirements. Knowing the requirements leads to the following information:
The boiler(s) capacity, taken from the maximum system load requirement.
The boiler(s) turndown, taken from the minimum system load requirement.
Conditions for maximum efficiency, taken from the average system load requirement.
Determining the total system load requires an understanding of the type(s) of load in the system. There are three types of loads: heating, process, and combination.
The primary purpose of the boiler is to supply energy to the facility's operations – for comfort heating, manufacturing process, laundry, kitchen, etc. The nature of the facility's operation will dictate whether a steam or hot water boiler should be used. Hot water is commonly used in heating applications, with the boiler supplying water to the system at 120°F to 220°F. The operating pressure for hot water heating systems usually is 30 psig to 125 psig (hydrostatic). Under these conditions, there is a wide range of hot water boiler products available. If system requirements are for hot water of more than 250°F, a high-temperature water boiler should be considered.
Package boiler is a boiler that had been fabricated and available as a complete package. The entire pressure parts have been assembled in the workshop and ready to be sent to the field or site where power plant is located. On the field/site requires only connection and integration of course work in electrical connections, water pipes, steam pipes and fuel piping system to operate. Package boiler is one of classification of boiler based on erection. Design package boilers in general are the type of Fire Tube Boiler and have made up shell and tubes. This type has high heat transfer both radiation and convection.
The combustion air preheater is definitely one of heat exchanger applications. Based on Figure 1 below, flue gas simply leaves steam boiler and passes via air preheater. The combustion air is passed through this equipment too to increase its temperature before being combined with boiler fuel.
Because the temperature of combustion air is lower than the temperature of flue gas, combustion air receive heat transfer from flue gas through combustion air preheater in the process of convection heat transfer. The heat transfer make temperature of flue gas lower and consequently minimizes its heat loss and also decreases the air temperature to stack.