There are so many options to weigh when looking for high efficiency boilers: hot water or steam, wetback or dryback, type of fuel, and more. However, there are a few key considerations to make when evaluating a new boiler for efficiency that will help you no matter what your other considerations may be. Look for a fan that can deliver a stable air supply, a burner and boiler unit that can produce low emissions, a design that maximizes flue gas velocity, smart pressure vessel design, and an efficient heating power to boiler surface ratio are just a few considerations to keep in mind. These simple but powerful design elements are hallmarks of solid construction and will add up to significant performance enhancements. Our team members are always available for consultation and can make specific recommendations when it comes to models once we know more about your needs.
All boilers, whether hot water or steam, depend on fuel to run. The heating process is initiated when the burner heats or evaporates the water inside it, which is ultimately transported via pipe systems. Hot water boilers rely on pumps to move the heat through the system, while steam boilers are transported with the pressure generated in the heating process. Eventually, cooled water or condensed steam is returned back through the pipes to the boiler system so that it can be heated once again. While the boiler is generating energy in the form of heat, flue gases, a byproduct of this process, are removed through a chimney system - which is why regulating the emissions of industrial boilers is taken very seriously.
A dryback boiler has a rear wall that is lined with refractory, a wetback boiler has a rear wall that is jacketed by water. Because of this fact, wetback boilers typically boast higher efficiency than dryback boilers as the heat from combustion goes directly into heating water instead of refractory. Wetback boilers are also more forgiving with load changes as the reversal chamber of the boiler is totally submerged in water creating an even heat transfer on the intermediate tube sheet to furnace joint.
One of the most difficult questions of purchasing new boilers is deciding how many boilers will be necessary. The best way is to consult with an expert who can guide you through the process. However, there are two factors to consider before you speak to an expert.
Any unusual noises should always be treated seriously.
One of the first things to check if a boiler is unusually noisy is the boiler's thermostat. If the thermostat is malfunctioning, water can become too hot and begin to boil, which could cause loud noises. If the thermostat is broken it may need to be replaced to prevent the water from heating up so much.
Another reason for a noisy boiler could be mineral deposits. As the water heats up inside the boiler, minerals may sink to the bottom of the tank and affect the heat exchange. This may create hot spots within the boiler in which water is overheated, leading to loud noises.
Low water pressure is also a concern that can result in loud noises. If water pressure is low, the boiler is tend to be overheat.
Boilers with low water volumes require a minimum flow requirement to prevent localized boiling and subsequent heat exchanger damage in a low to zero water flow situation. Minimum flow requirement varies by boiler design. Regardless if a boiler itself has a minimum flow requirement, every hydronic heating system needs to be designed to carry the energy being created away from the boiler to avoid high temperature shut down.
The boiler gas consumption calculation need the following parameters: gas calorific value and boiler thermal efficiency.
Theoretically, the gas consumption of boiler = boiler thermal capacity ÷ (calorific value of gas x boiler thermal efficiency )
Take the 1 tph steam boiler as an example:
= 600,000 cal / (8500Kcal * 0.98) =72m3/h, the 1 tph boiler's gas consumption per hour is about 72 cubic meters.