In general, gas-fired boiler uses natural gas to heat water in order to provide heat source for underfloor heating and heating radiator, while condensing gas-fired uses condensation technology to recycle the thermal energy from the exhaust gas.
1. During the start-up process of the burner, if the burner repeatedly alarms and locks, it should be found out the reason, find the fault and eliminate it, and then press the reset button to inherit the start. Note: The continuous press of the reset button should not exceed 10 seconds
2. If the burner is not successful in one combustion, the natural gas boiler induced draft fan should be restarted, and the second combustion can be started after 5 minutes of ventilation.
3. In the normal operation era, the burner close to the thermal equipment department (such as the connecting flange, etc.) will be very hot, to prevent the formation of burns. Do not place flammable materials in the vicinity to avoid causing fire.
4. During the operation of natural gas-fired boilers, it is necessary to closely supervise the working conditions of hot water circulation pumps and natural gas-fired boiler pressures, natural gas distribution bags, pipeline valves, pressure gauges, flow meters, and water
The fuel of a gas-fired boiler is gas such as natural gas, city gas, biogas and liquefied gas, etc. What kind of fuel the boiler burns is decided by an equipment called a burner. The boiler equipped with a gas-fired burner is called a gas-fired boiler. There are three methods of gas-fired boiler combustion as per technical characteristics of how the gas and air mix.
1. Diffusion combustion:
Gas and air mutually diffuse at the gas nozzle and are burning. The advantages are burning stably and with simple burner structure. However, the heated area is easy to be carbonized due to long flame, which is easy to produce incomplete combustion.
2. Premixed combustion:
A part of air and gas are premixed before combustion (coefficient of primary air surplus is between 0.2-0.8), and then being burned. The advantages are clear combustion flame, enhanced combustion, and high thermal efficiency.
If the boiler burner fails or is faulty, then your boiler is not going to be able to generate heat efficiently, or in the worst case not at all . As industrial boilers are in almost constant use they are built to be very robust and last for decades, nevertheless they can still have problems with broken burners from time to time. Burner pumps, heads and nozzles can all cause problems but a swift replacement should limit your down time.
Missing insulation reduces the system’s efficiency. Insulation helps hold heat in the system, and when the heat can dissipate, more fuel is needed to maintain proper temperature and pressure.
Since missing insulation may not be visible, the best way to detect it is with a thermal imager. If you don’t have a thermal imager as a part of your building’s operations, a plumber or other professional likely will carry one. If your energy costs have increased without a rise in the amount you use the boiler, suspect missing insulation and call to have the system inspected with a thermal imager.
The characteristics of dust collector of coal-fired boiler:
1) Separating the particulate matters. The dust collector of coal-fired boiler can effectively separate the big particulate matters with ignition conditions, so as to reduce the obstruction of dust removal system and improve efficiency.
2) Reducing dust. The dust collector of coal-fired boiler can prevent the dust-contained gas from washing the bag to lower the dust concentration of dust-contained gas and extend the service life of filtering bag and pulse magnetic valve.
3) Adopting materials with high quality. The dust collector of coal-fired boiler adopts high-temperature resistant materials that can extend the service life of dust collector.
4) Adopting elastic piston ring. The mouth of filtering bag adopts elastic piston ring to ensure the leakproofness, which is firm and reliable.
There are many opinions on the best way to clean a steam boiler. One of the oldest ways is to dissolve a pound of tri-sodium phosphate (TSP) and a pound of caustic soda (lye) in water and pour it into the boiler. Let it cook for a few hours and then drain the boiler. If you can't buy TSP in your town, try a commercial soap called MEX. It works well and will not damage the rubber gaskets found in some boilers. However, before you clean any boiler, check the manufacturer's instructions for their recommendations.
The causes of coal erosion as distinct from all the other types of erosion are many but from a theoretical point of view are simply high velocity particles impacting and rubbing along the surface of the tubes.
The boiler designer minimises this by providing a volume in the furnace and a direction of travel of the coal such that it is burned before it can touch the tubes. This can be defeated by increasing the velocity reducing the combustibility or increasing the mass flow. All of these parameters occur if you reduce the calorific value of the fuel or overload the boiler. If you had no erosion before changing your fuel that is the cause. If you have never had design fuel you dont know if it would have eroded anyway. If it would the cause will be a different reason such as arodynamic flows and aiming of the burner or size of the tartget fireball centre. This is a serious problem and should be dealt with by an experienced expert.