Circulating fluidized bed boiler is a specific type of boilers, and compared with the other boilers, it has certain advantages, which are: it has great improvement in combustion technology, which can improve the boiler combustion quality and combustion effect, and in turn, to improve the boiler effect. This is achieved because two return feeders are used in this type of boiler to allow the fuel to form a circulation loop between the furnace and the return feeder.
In order to improve the combustion efficiency of the boiler, in a large boiler, the combustion air is not supplied all at once, but is supplied in two times, one is supplied with the fuel that controls the rate of combustion as well as the amount of fuel that can be burned,and the other is directly supplied to the combustion process that that improves combustion efficiency. The primary air rate of the boiler refers to the proportion of the primary air. If the total air volume is 100% and the primary air rate is 70%, the secondary air rate is 30%.
The pharmaceutical sector is an area that requires the highest quality steam for its processes, known as clean steam, instead of other industrial steams. Some processes in this sector even need the highest level of quality - pure steam, which involves even stricter steam purity requirements for use in the sterilization of raw materials and pharmaceutical products at high temperatures.
Boiler is a kind of thermal energy conversion equipment composed of drum and furnace. It uses fuel combustion to heat water into steam or hot water to provide power for production or help auxiliary production. With the continuous improvement of industrial manufacturing technology, boiler's control has also changed from the traditional full manual operation to the present automatic intelligent control.
Combustion Efficiency
Combustion efficiency is the effectiveness of the burner only and relates to its ability to completely burn the fuel. The boiler has little bearing on combustion efficiency. A well-designed burner will operate with as little as 15% to 20% excess air, while converting all combustibles in the fuel to thermal energy.
Thermal Efficiency
Thermal efficiency is the effectiveness of the heat transfer in a boiler. It does not take into account boiler radiation and convection losses - for example, from the boiler shell, water column piping, etc.
Fuel-to-Steam Efficiency
The coal-fired boiler has always been one of the important boiler types in the industrial production and its operating costs and capacity play an important role in the enterprise operation.
The thermal efficiency of an industrial boiler is a measure of how effectively the boiler converts the energy contained in the fuel into usable heat. It is typically expressed as a percentage, indicating the ratio of heat output for heating or producing steam to the energy input from the fuel consumed. This efficiency is crucial for understanding the performance of a boiler, as it directly impacts fuel consumption, operational costs, and environmental emissions.
Factors Influencing Thermal Effi...
Radiation and convection losses will vary with boiler type, size, and operating pressure. The losses are typically considered constant in BTU/hr, but become a larger percentage loss as the firing rate decreases. Boiler design factors that also impact efficiencies of the boiler are heating surface, flue gas passes, and design of the boiler and burner package.